An efficient sparse LSTM accelerator on embedded FPGAs with bandwidth-oriented pruning

Long short-term memory (LSTM) networks have been widely used in natural language processing applications. Although over 80% weights can be pruned to reduce the memory requirement with little accuracy loss, the pruned model still cannot be buffered on-chip for small embedded FPGAs. Considering that w...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Li, Shiqing, Zhu, Shien, Luo, Xiangzhong, Luo, Tao, Liu, Weichen
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/172603
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English