An efficient sparse LSTM accelerator on embedded FPGAs with bandwidth-oriented pruning

Long short-term memory (LSTM) networks have been widely used in natural language processing applications. Although over 80% weights can be pruned to reduce the memory requirement with little accuracy loss, the pruned model still cannot be buffered on-chip for small embedded FPGAs. Considering that w...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Shiqing, Zhu, Shien, Luo, Xiangzhong, Luo, Tao, Liu, Weichen
其他作者: School of Computer Science and Engineering
格式: Conference or Workshop Item
語言:English
出版: 2023
主題:
在線閱讀:https://hdl.handle.net/10356/172603
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English