A transformer-based deep neural network model for SSVEP classification
Steady-state visual evoked potential (SSVEP) is one of the most commonly used control signals in the brain-computer interface (BCI) systems. However, the conventional spatial filtering methods for SSVEP classification highly depend on the subject-specific calibration data. The need for the methods t...
Saved in:
Main Authors: | Chen, Jianbo, Zhang, Yangsong, Pan, Yudong, Xu, Peng, Guan, Cuntai |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/172792 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Spectrum and phase adaptive CCA for SSVEP-based brain computer interface
由: Zhang, Zhuo, et al.
出版: (2020) -
Optimizing filter-bank canonical correlation analysis for fast response SSVEP Brain-Computer Interface (BCI)
由: Phyo Wai, Aung Aung, et al.
出版: (2021) -
An asynchronous P300 BCI with SSVEP-based control state detection
由: Panicker, R.C., et al.
出版: (2014) -
Adaptation and Control State Detection Techniques for Brain-Computer Interfaces
由: RAJESH CHANDRASEKHARA PANICKER
出版: (2012) -
Adaptive transfer learning for EEG motor imagery classification with deep convolutional neural network
由: Zhang, Kaishuo, et al.
出版: (2022)