Data-driven moving horizon state estimation of nonlinear processes using Koopman operator
In this paper, a data-driven constrained state estimation method is proposed for nonlinear processes. Within the Koopman operator framework, we propose a data-driven model identification procedure for state estimation based on the algorithm of extended dynamic mode decomposition, which seeks an opti...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/173071 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, a data-driven constrained state estimation method is proposed for nonlinear processes. Within the Koopman operator framework, we propose a data-driven model identification procedure for state estimation based on the algorithm of extended dynamic mode decomposition, which seeks an optimal approximation of the Koopman operator for a nonlinear process in a higher-dimensional space that correlates with the original process state-space via a prescribed nonlinear coordinate transformation. By implementing the proposed procedure, a linear state-space model can be established based on historic process data to describe the dynamics of a nonlinear process and the nonlinear dependence of the sensor measurements on process states. Based on the identified Koopman operator, a linear moving horizon estimation (MHE) algorithm that explicitly addresses constraints on the original process states is formulated to efficiently estimate the states in the higher-dimensional space. The states of the treated nonlinear process are recovered based on the state estimates provided by the MHE estimator designed in the higher-dimensional space. Two process examples are utilized to demonstrate the effectiveness and superiority of the proposed framework. |
---|