Robust and adaptive decision-making: a reinforcement learning perspective
How to make decisions in complex and uncertain environments is a challenging and crucial task. Adversaries and perturbations in these environments disrupt existing policies, while the dynamic nature of the environments renders policies obsolete. Therefore, it is vital to learn robust policies capabl...
Saved in:
主要作者: | Xue, Wanqi |
---|---|
其他作者: | Bo An |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/173125 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multi-agent reinforcement learning for complex sequential decision-making
由: Qiu, Wei
出版: (2024) -
Adversarial robustness of deep reinforcement learning
由: Qu, Xinghua
出版: (2022) -
Robust multi-agent team behaviors in uncertain environment via reinforcement learning
由: Yan, Kok Hong
出版: (2022) -
Explainable artificial intelligence (XAI) for healthcare decision-making
由: Zeng, Zhiwei
出版: (2022) -
Meta-learning for deep reinforcement learning
由: Poon, Jun Yaw
出版: (2021)