Regional tourism demand forecasting with spatiotemporal interactions: a multivariate decomposition deep learning model
With the advancement of economic globalization and regional integration, regional tourism flows are more closely linked, which provides new clues for improving forecasting. This study develops a multivariate decomposition deep learning model to forecast tourism demand by capturing spatiotemporal int...
Saved in:
Main Authors: | Yang, Dongchuan, Li, Yanzhao, Guo, Ju’e, Li, Guang, Sun, Shaolong |
---|---|
其他作者: | Nanyang Business School |
格式: | Article |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/173592 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Analysis of International Tourism Demand for Cambodia’s Tourism
由: Chantha Hor
出版: (2017) -
A HOTEL ROOM FORECASTING MODEL
由: QUEK SOH HOON
出版: (2020) -
Estimating International Tourism Demand for Laos PDR Using Panel ARDL Approach
由: Athikone Bouphanouvong
出版: (2017) -
Index-modulation OAM detectors resistant to beam misalignment
由: Chen, Min, et al.
出版: (2024) -
A prospect and potential for hospitality and tourism market in Songkhla province
由: Kornravee Hong-amta
出版: (2006)