Metabolism of glucose activates TORC1 through multiple mechanisms in Saccharomyces cerevisiae

Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutr...

全面介紹

Saved in:
書目詳細資料
Main Authors: Alfatah, Mohammad, Cui, Liang, Goh, Corinna Jie Hui, Cheng, Trishia Yi Ning, Zhang, Yizhong, Naaz, Arshia, Wong, Jin Huei, Lewis, Jacqueline, Poh, Wei Jie, Arumugam, Prakash
其他作者: School of Biological Sciences
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/173930
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Target of Rapamycin Complex 1 (TORC1) is a conserved eukaryotic protein complex that links the presence of nutrients with cell growth. In Saccharomyces cerevisiae, TORC1 activity is positively regulated by the presence of amino acids and glucose in the medium. However, the mechanisms underlying nutrient-induced TORC1 activation remain poorly understood. By utilizing an in vivo TORC1 activation assay, we demonstrate that differential metabolism of glucose activates TORC1 through three distinct pathways in yeast. The first "canonical Rag guanosine triphosphatase (GTPase)-dependent pathway" requires conversion of glucose to fructose 1,6-bisphosphate, which activates TORC1 via the Rag GTPase heterodimer Gtr1GTP-Gtr2GDP. The second "non-canonical Rag GTPase-dependent pathway" requires conversion of glucose to glucose 6-phosphate, which activates TORC1 via a process that involves Gtr1GTP-Gtr2GTP and mitochondrial function. The third "Rag GTPase-independent pathway" requires complete glycolysis and vacuolar ATPase reassembly for TORC1 activation. We have established a roadmap to deconstruct the link between glucose metabolism and TORC1 activation.