Learning compliant box-in-box insertion through haptic-based robotic teleoperation

In modern logistics, the box-in-box insertion task is representative of a wide range of packaging applications, and automating compliant object insertion is difficult due to challenges in modelling the object deformation during insertion. Using Learning from Demonstration (LfD) paradigms, which are...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Kana, Sreekanth, Gurnani, Juhi, Ramanathan, Vishal, Ariffin, Mohammad Zaidi, Turlapati, Sri Harsha, Campolo, Domenico
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: مقال
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/173990
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In modern logistics, the box-in-box insertion task is representative of a wide range of packaging applications, and automating compliant object insertion is difficult due to challenges in modelling the object deformation during insertion. Using Learning from Demonstration (LfD) paradigms, which are frequently used in robotics to facilitate skill transfer from humans to robots, can be one solution for complex tasks that are difficult to mathematically model. In order to automate the box-in-box insertion task for packaging applications, this study makes use of LfD techniques. The proposed framework has three phases. Firstly, a master-slave teleoperated robot system is used in the initial phase to haptically demonstrate the insertion task. Then, the learning phase involves identifying trends in the demonstrated trajectories using probabilistic methods, in this case, Gaussian Mixture Regression. In the third phase, the insertion task is generalised, and the robot adjusts to any object position using barycentric interpolation. This method is novel because it tackles tight insertion by taking advantage of the boxes' natural compliance, making it possible to complete the task even with a position-controlled robot. To determine whether the strategy is generalisable and repeatable, experimental validation was carried out.