Robust partial-to-partial point cloud registration in a full range

Registration of 3D objects from point clouds is a challenging task due to sparse and noisy measurements, incomplete observations, and large transformations. In this work, we propose the Graph Matching Consensus Network (GMCNet) to estimate faithful correspondences for full-range Partial-to-Partial p...

全面介紹

Saved in:
書目詳細資料
Main Authors: Pan, Liang, Cai, Zhongang, Liu, Ziwei
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/177987
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Registration of 3D objects from point clouds is a challenging task due to sparse and noisy measurements, incomplete observations, and large transformations. In this work, we propose the Graph Matching Consensus Network (GMCNet) to estimate faithful correspondences for full-range Partial-to-Partial point cloud Registration (PPR) in object-level registration scenarios. To encode robust point descriptors, we employ a novel Transformation-robust Point Transformer (TPT) module to adaptively aggregate local features with respect to the structural relations, taking advantage of both handcrafted rotation-invariant (RI) features and noise-resilient spatial coordinates. Based on the synergy of hierarchical graph networks and graphical modeling, we propose the Hierarchical Graphical Modeling (HGM) architecture to encode robust descriptors comprising of i) a unary term learned from RI features, and ii) multiple smoothness terms encoded from neighboring point relations at different scales through our TPT modules. Extensive experiments show that GMCNet outperforms previous state-of-the-art methods for PPR.