An omics-based machine learning approach to predict diabetes progression: a RHAPSODY study

Aims/hypothesis: People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more quickly to insulin initiation than others. Although classical biomarkers such as age, HbA1c and diabetes duration are associated with glycaemic progression, it is unclear how well s...

全面介紹

Saved in:
書目詳細資料
Main Authors: Slieker, Roderick C., Münch, Magnus, Donnelly, Louise A., Bouland, Gerard A., Dragan, Iulian, Kuznetsov, Dmitry, Elders, Petra J. M., Rutter, Guy A., Ibberson, Mark, Pearson, Ewan R., Hart, Leen M. 't, van de Wiel, Mark A., Beulens, Joline W. J.
其他作者: Lee Kong Chian School of Medicine (LKCMedicine)
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/178674
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!