MACE: mass concept erasure in diffusion models
The rapid expansion of large-scale text-to-image diffusion models has raised growing concerns regarding their potential misuse in creating harmful or misleading content. In this paper, we introduce MACE, a finetuning framework for the task of MAss Concept Erasure. This task aims to prevent models fr...
Saved in:
Main Authors: | Lu, Shilin, Wang, Zilan, Li, Leyang, Liu, Yanzhu, Kong, Adams Wai Kin |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/180560 https://openaccess.thecvf.com/CVPR2024?day=all |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
TF-ICON: diffusion-based training-free cross-domain image composition
由: Lu, Shilin, et al.
出版: (2023) -
LaVie: high-quality video generation with cascaded latent diffusion models
由: Wang, Yaohui, et al.
出版: (2025) -
Coherent visual story generation using diffusion models
由: Jiang, Jiaxi
出版: (2024) -
Evolving storytelling: benchmarks and methods for new character customization with diffusion models
由: Wang, Xiyu, et al.
出版: (2024) -
Exemplar based image colourization using diffusion models
由: Rahul, George
出版: (2024)