Hardware-constrained edge deep learning
Neural Networks have become commonplace in our daily lives, powering everything from language models in chatbots to computer vision models in industrial machinery. The unending quest for greater model performance has led to an exponential growth in model size. For many devices, especially edge dev...
محفوظ في:
المؤلف الرئيسي: | Ng, Jia Rui |
---|---|
مؤلفون آخرون: | Weichen Liu |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/181190 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Hardware constrained deep learning: an empirical analysis of dynamic quantisation across computer vision and natural language processing domains
بواسطة: Sai, Shein Htet
منشور في: (2025) -
Parameterized DNN design for identifying the resource limitations of edge deep learning hardware
بواسطة: Aung, Shin Thant
منشور في: (2024) -
Detecting ransomware using deep learning and hardware performance counters
بواسطة: Hashil Jugjivan
منشور في: (2025) -
Audio intelligence & domain adaptation for deep learning models at the edge
بواسطة: Ng, Linus JunJia
منشور في: (2021) -
Energy efficient scheduling for deadline-constrained applications in edge computing systems
بواسطة: Wang, Qianteng
منشور في: (2024)