Hardware-constrained edge deep learning
Neural Networks have become commonplace in our daily lives, powering everything from language models in chatbots to computer vision models in industrial machinery. The unending quest for greater model performance has led to an exponential growth in model size. For many devices, especially edge dev...
Saved in:
主要作者: | Ng, Jia Rui |
---|---|
其他作者: | Weichen Liu |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/181190 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Hardware constrained deep learning: an empirical analysis of dynamic quantisation across computer vision and natural language processing domains
由: Sai, Shein Htet
出版: (2025) -
Parameterized DNN design for identifying the resource limitations of edge deep learning hardware
由: Aung, Shin Thant
出版: (2024) -
Detecting ransomware using deep learning and hardware performance counters
由: Hashil Jugjivan
出版: (2025) -
Audio intelligence & domain adaptation for deep learning models at the edge
由: Ng, Linus JunJia
出版: (2021) -
Energy efficient scheduling for deadline-constrained applications in edge computing systems
由: Wang, Qianteng
出版: (2024)