Developing effective optimized machine learning approaches for settlement prediction of shallow foundation
The precise assessment of shallow foundation settlement on cohesionless soils is a challenging geotechnical issue, primarily due to the significant uncertainties related to the factors influencing the settlement. This study aims to create an advanced hybrid machine learning methodology for accuratel...
محفوظ في:
المؤلفون الرئيسيون: | Khajehzadeh, Mohammad, Keawsawasvong, Suraparb, Kamchoom, Viroon, Shi, Chao, Khajehzadeh, Alimorad |
---|---|
مؤلفون آخرون: | School of Civil and Environmental Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/181372 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
基于深度学习的 LSTM 模型在 X 荧光光谱中的应用 = Application of an LSTM model based on deep learning through X-ray fluorescence spectroscopy
بواسطة: Tang, Lin, وآخرون
منشور في: (2024) -
Short-Term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
بواسطة: Zhou, H., وآخرون
منشور في: (2021) -
Classification of ECG anomaly with dynamically-biased LSTM for continuous cardiac monitoring
بواسطة: Hu, Jinhai, وآخرون
منشور في: (2024) -
Skeleton-based human action recognition with global context-aware attention LSTM networks
بواسطة: Liu, Jun, وآخرون
منشور في: (2020) -
Semantic-filtered Soft-Split-Aware video captioning with audio-augmented feature
بواسطة: Xu, Yuecong, وآخرون
منشور في: (2021)