Exploring gunshot residue detection in fingerprints by functionalized particle-coupled matrix-assisted laser desorption/ionization mass spectrometry

In firearm forensic investigations, detecting gunshot residue (GSR) is crucial for linking firearms to suspects and determining firing distance for forensic reconstruction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) is emerging as a versatile and prom...

Full description

Saved in:
Bibliographic Details
Main Authors: Adav, Sunil S., Tan, Crystal Yan Wen, Low, Choon Teck, Loo, Song Wei, Ridhwan Yusoff, Gautam, Archana, Yong, Yuk Lin, Yang, Chiew Yung, Lim, Chin Chin, Ng, Kee Woei
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/10356/181491
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In firearm forensic investigations, detecting gunshot residue (GSR) is crucial for linking firearms to suspects and determining firing distance for forensic reconstruction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) is emerging as a versatile and promising technological platform for fingerprint analysis. The capability of functionalized particles as an advanced dusting powder for visualizing latent fingerprints is widely recognized. This study aims to investigate the feasibility of employing functionalized magnetic fingerprint dusting powders for distinguishing regular and GSR fingerprints using MALDI-ToF-MS, thereby enhancing forensic evidentiary support. In this study, silica and carbon coated magnetic iron oxide particles were surface functionalized with phenyltriethoxy orthosilicate (PTEOS) or 3aminopropyl triethoxysilane (APTES) to create hydrophobic and hydrophilic particles, respectively. Donor shooters' fingerprints, both GSR-containing and regular, were analyzed using these functionalized particles coupled with MALDI-ToFMS. The results demonstrated effective fingerprint visualization and conclusive discrimination between GSR-containing and regular fingerprints through orthogonal partial least squares discriminant analysis. This technique provides enhanced sensitivity, speed, and adaptability compared to conventional methods, making it a promising choice for initial detection of GSR in latent fingerprints. Moreover, when subjected to thorough analysis using advanced instruments, it has the potential to significantly strengthen the probative value of fingerprint evidence in forensic investigations.