Distributed optimization of nonlinear singularly perturbed multi-agent systems via a small-gain approach and sliding mode control

This paper addressed the challenging problem of distributed optimization for nonlinear singular perturbation multi-agent systems. The main focus lies in steering the system outputs toward the optimal points of a globally objective function, which was formed by the combination of several local functi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Qian, Jin, Zhenghong, Qiao, Linyan, Du, Aichun, Liu, Gang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2024
主題:
在線閱讀:https://hdl.handle.net/10356/181837
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This paper addressed the challenging problem of distributed optimization for nonlinear singular perturbation multi-agent systems. The main focus lies in steering the system outputs toward the optimal points of a globally objective function, which was formed by the combination of several local functions. To achieve this objective, the singular perturbation multi-agent system was initially decomposed into fast and slow subsystems. Compared to traditional methods, robustness in reference-tracking signals was ensured through the design of fast-slow sliding mode controllers. Additionally, our method ensured robustness against errors between reference signals and optimal values by employing a distributed optimizer to generate precise reference signals. Furthermore, the stability of the entire closed-loop system was rigorously guaranteed through the application of the small-gain theorem. To demonstrate the efficacy of the proposed approach, a numerical example was presented, providing empirical validation of its effectiveness in practical scenarios.