Robustness of machine learning predictions for Fe-Co-Ni alloys prepared by various synthesis methods
Developing high-performance alloys is essential for applications in advanced electromagnetic energy conversion devices. In this study, we assess Fe-Co-Ni alloy compositions identified in our previous work through a machine learning (ML) framework, which used both multi-property ML models and multi-o...
محفوظ في:
المؤلفون الرئيسيون: | Padhy, Shakti P., Mishra, Soumya Ranjan, Tan, Li Ping, Davidson, Karl Peter, Xu, Xuesong, Chaudhary, Varun, Ramanujan, Raju V. |
---|---|
مؤلفون آخرون: | School of Materials Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/182002 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Accelerated discovery of multi-property optimized Fe–Cu alloys
بواسطة: Xu, Xuesong, وآخرون
منشور في: (2024) -
Experimentally validated inverse design of multi-property Fe-Co-Ni alloys
بواسطة: Padhy, Shakti P., وآخرون
منشور في: (2024) -
Accelerated study of magnetic Fe-Co-Ni alloys through compositionally graded spark plasma sintered samples
بواسطة: Chaudhary, Varun, وآخرون
منشور في: (2022) -
Accelerated multi-property screening of Fe–Co–Ni alloy libraries by hyper-heuristic combinatorial flow synthesis and high-throughput spark plasma sintering
بواسطة: Padhy, Shakti P., وآخرون
منشور في: (2024) -
In situ operando investigations of the thermal instability mechanisms of a deformed Ti-48Al alloy
بواسطة: Krishnan, P.S. Sankara Rama, وآخرون
منشور في: (2025)