Lithium-ion battery remaining useful life prediction based on random forest machine learning
Accurately forecasting the Remaining Useful Life (RUL) of lithium-ion batteries is essential for maintaining reliability and maximizing the performance of battery powered systems. Traditional Random Forest Regression (RFR) techniques have demonstrated strong accuracy but often face computational cha...
محفوظ في:
المؤلف الرئيسي: | Li, Xinwei |
---|---|
مؤلفون آخرون: | Xu Yan |
التنسيق: | Thesis-Master by Coursework |
اللغة: | English |
منشور في: |
Nanyang Technological University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/182343 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Conjugated polymers as promising electrode materials for lithium-ion batteries
بواسطة: Shi, Handa
منشور في: (2025) -
Temperature effect on “Ragone Plots” of lithium-ion batteries
بواسطة: Kumar, S. Krishna, وآخرون
منشور في: (2018) -
Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO 2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries
بواسطة: Zhou, Rui, وآخرون
منشور في: (2016) -
Enhancing the lithium-ion battery life predictability using a hybrid method
بواسطة: Li, Ling Ling, وآخرون
منشور في: (2019) -
DEVELOPMENT OF HIGH RATE PERFORMANCE PHOSPHATE CATHODE MATERIALS FOR LITHIUM-ION BATTERIES
بواسطة: XIAO PENGFEI
منشور في: (2013)