An evolutionary deep learning approach using flexible variable-length dynamic stochastic search for anomaly detection of robot joints
Anomaly detection is crucial for condition monitoring of robot joints. An increasing number of anomaly detection methods based on deep learning have been investigated. However, since the deep learning architectures for anomaly detection are manually designed by trial and error, the design process is...
Saved in:
Main Authors: | Liu, Qi, Yu, Yongchao, Han, Boon Siew, Zhou, Wei |
---|---|
其他作者: | School of Mechanical and Aerospace Engineering |
格式: | Article |
語言: | English |
出版: |
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/182485 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
TCF-Trans: temporal context fusion transformer for anomaly detection in time series
由: Peng, Xinggan, et al.
出版: (2024) -
Toward explainable deep anomaly detection
由: PANG, Guansong, et al.
出版: (2021) -
Phase Fourier Reconstruction for Anomaly Detection on Metal Surface Using Salient Irregularity
由: Hung, Tzu-Yi, et al.
出版: (2017) -
Deep weakly-supervised anomaly detection
由: PANG, Guansong, et al.
出版: (2023) -
AnomalyCLIP: Object-agnostic prompt learning for zero-shot anomaly detection
由: ZHOU, Qihang, et al.
出版: (2024)