Learning of soft-object models using graph neural networks
In the field of soft-object modeling, the motion prediction of deformable linear objects (DLOs) has long been a critical challenge in robotic control and automation systems. However, DLO deformation exhibits high nonlinearity, influenced by material properties, external forces, and other factors, ma...
Saved in:
主要作者: | Zhang, Zihan |
---|---|
其他作者: | Cheah Chien Chern |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2025
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/184317 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Federated learning for graph neural networks
由: Yan, Yige
出版: (2023) -
Contrastive learning for heterogeneous graph neural networks
由: Dong, Renzhi
出版: (2023) -
Learning a mixture of graph neural networks
由: Lai, Yu-Shiang
出版: (2023) -
Graph attention networks and approximate personalized propagation of neural prediction models for unsupervised graph representation learning
由: Bharadwaja, Tanay
出版: (2022) -
Graph neural network with knowledge graph
由: Ang, Qi Xuan
出版: (2020)