Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe.
Mitotic catastrophe is a type of cell death that occurs after failed mitosis. However, little is known about the mechanism underlying this form of cell death. Previous studies have demonstrated that the protein level of CAP-H is reduced during taxol-induced mitotic catastrophe. Depletion of CAP-H re...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/18917 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-18917 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-189172023-02-28T18:00:18Z Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. Lee, Kelvin Kai Wei. Li, Hoi Yeung School of Biological Sciences DRNTU::Science::Biological sciences::Cytology Mitotic catastrophe is a type of cell death that occurs after failed mitosis. However, little is known about the mechanism underlying this form of cell death. Previous studies have demonstrated that the protein level of CAP-H is reduced during taxol-induced mitotic catastrophe. Depletion of CAP-H resulted in the loss of condensin I from mitotic chromosomes, weakening chromosome integrity. Consequently, chromosome fragmentation is facilitated, leading to cell death by mitotic catastrophe. Here, we proposed that the depletion of CAP-H is a result of caspase-3 activation during taxol-induced mitotic catastrophe. To verify this, polymerase chain reaction site-directed mutagenesis was performed to identify specific caspase cleavage sites in CAP-H. Six mutants have been successfully cloned and further studies are required to confirm that CAP-H is a substrate of activated caspase-3. Bachelor of Science in Biological Sciences 2009-08-17T08:35:09Z 2009-08-17T08:35:09Z 2009 2009 Final Year Project (FYP) http://hdl.handle.net/10356/18917 en Nanyang Technological University 28 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Cytology |
spellingShingle |
DRNTU::Science::Biological sciences::Cytology Lee, Kelvin Kai Wei. Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
description |
Mitotic catastrophe is a type of cell death that occurs after failed mitosis. However, little is known about the mechanism underlying this form of cell death. Previous studies have demonstrated that the protein level of CAP-H is reduced during taxol-induced mitotic catastrophe. Depletion of CAP-H resulted in the loss of condensin I from mitotic chromosomes, weakening chromosome integrity. Consequently, chromosome fragmentation is facilitated, leading to cell death by mitotic catastrophe. Here, we proposed that the depletion of CAP-H is a result of caspase-3 activation during taxol-induced mitotic catastrophe. To verify this, polymerase chain reaction site-directed mutagenesis was performed to identify specific caspase cleavage sites in CAP-H. Six mutants have been successfully cloned and further studies are required to confirm that CAP-H is a substrate of activated caspase-3. |
author2 |
Li, Hoi Yeung |
author_facet |
Li, Hoi Yeung Lee, Kelvin Kai Wei. |
format |
Final Year Project |
author |
Lee, Kelvin Kai Wei. |
author_sort |
Lee, Kelvin Kai Wei. |
title |
Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
title_short |
Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
title_full |
Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
title_fullStr |
Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
title_full_unstemmed |
Caspase-mediated degradation of condensin I CAP-H during mitotic catastrophe. |
title_sort |
caspase-mediated degradation of condensin i cap-h during mitotic catastrophe. |
publishDate |
2009 |
url |
http://hdl.handle.net/10356/18917 |
_version_ |
1759857964549668864 |