Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters
In this thesis, the questions about alloy are addressed by the combination of statistical model and first principle calculation. It is mainly focused on the structural stability of the binary semiconductor alloys and cage-like alloy clusters. For the study of semiconductor alloys, a model named quas...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/19265 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-19265 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-192652023-02-28T23:54:30Z Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters Fan, Xiaofeng Shen Zexiang Kuo Jer-Lai School of Physical and Mathematical Sciences DRNTU::Engineering::Materials::Microelectronics and semiconductor materials DRNTU::Science::Physics::Electricity and magnetism In this thesis, the questions about alloy are addressed by the combination of statistical model and first principle calculation. It is mainly focused on the structural stability of the binary semiconductor alloys and cage-like alloy clusters. For the study of semiconductor alloys, a model named quasi-ordered structure (QOS) method is made, by considering the low-temperature nonequilibrium condition of alloy film growth. With the QOS method, the ZnO-based alloy systems including isostructural phase alloys BexZn1−xO and the nonisostructural phase alloys CdxZn1−xO, CdxZn1−xO, MgxZn1−xO and ZnSxO1−x, are investigated systematically. For the study of alloy clusters, a model named color-bond graph (CBG) theory is constructed based on the idea of evaluating the structural stability qualitatively by the bond-counting rule and the effect of local chemical environment for the density of chemical bond. Bonding counting rule is tested to evaluate qualitatively the stability of cage-like cluster (BN)12C12 and used to analyze the structural stability of bulk c-BNC2. With the CBG theory, we study the structural stabilities of cage-like cluster (BN)12C12 and cluster SinC60-n (0<=n<=30). DOCTOR OF PHILOSOPHY (SPMS) 2009-11-02T03:26:43Z 2009-11-02T03:26:43Z 2009 2009 Thesis Fan, X. F. (2009). Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/19265 10.32657/10356/19265 en 170 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials::Microelectronics and semiconductor materials DRNTU::Science::Physics::Electricity and magnetism |
spellingShingle |
DRNTU::Engineering::Materials::Microelectronics and semiconductor materials DRNTU::Science::Physics::Electricity and magnetism Fan, Xiaofeng Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
description |
In this thesis, the questions about alloy are addressed by the combination of statistical model and first principle calculation. It is mainly focused on the structural stability of the binary semiconductor alloys and cage-like alloy clusters. For the study of semiconductor alloys, a model named quasi-ordered structure (QOS) method is made, by considering the low-temperature nonequilibrium condition of alloy film growth. With the QOS method, the ZnO-based alloy systems including isostructural phase alloys BexZn1−xO and the nonisostructural phase alloys CdxZn1−xO, CdxZn1−xO, MgxZn1−xO and ZnSxO1−x, are investigated systematically. For the study of alloy clusters, a model named color-bond graph (CBG) theory is constructed based on the idea of evaluating the structural stability qualitatively by the bond-counting rule and the effect of local chemical environment for the density of chemical bond. Bonding counting rule is tested to evaluate qualitatively the stability of cage-like cluster (BN)12C12 and used to analyze the structural stability of bulk c-BNC2. With the CBG theory, we study the structural stabilities of cage-like cluster (BN)12C12 and cluster SinC60-n (0<=n<=30). |
author2 |
Shen Zexiang |
author_facet |
Shen Zexiang Fan, Xiaofeng |
format |
Theses and Dissertations |
author |
Fan, Xiaofeng |
author_sort |
Fan, Xiaofeng |
title |
Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
title_short |
Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
title_full |
Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
title_fullStr |
Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
title_full_unstemmed |
Theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
title_sort |
theoretical study of the structural stability of binary semiconductor alloys and cage-like alloy clusters |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/19265 |
_version_ |
1759857288893431808 |