Arrhythmia recognition from electrocardiogram using non-linear analysis and unsupervised clustering techniques
In this dissertation, a new analytical framework for arrhythmia recognition in ECG signals using nonlinear analysis and unsupervised clustering techniques is developed. The problem of ECG signal conditioning, ECG episode characterization, characteristic wave detection, and arrhythmia recognition, ha...
Saved in:
主要作者: | Sun, Yan. |
---|---|
其他作者: | Chan, Kap Luk |
格式: | Theses and Dissertations |
出版: |
2008
|
主題: | |
在線閱讀: | http://hdl.handle.net/10356/3312 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Audio segmentation method for electrocardiogram (ECG) signal analysis
由: Ei, Mon Mon Htwe
出版: (2008) -
Modelling of ECG signals with applications to telemedicine and diagnosis of cardiac arrhythmias
由: Ge, Ding Fei.
出版: (2008) -
Unsupervised image segmentation using robust clustering
由: Pan, Hong
出版: (2008) -
Towards numerical temporal-frequency system modelling of associations between ballistocardiogram and electrocardiogram
由: Aravind, Srinivasan
出版: (2016) -
EEG-based emotion recognition using deep learning
由: Samriddhi, Govil
出版: (2022)