HAMLET mediates neural stem cell proliferation and differentiation.
HAMLET (Human alpha-lactalbumin made lethal to tumor cells), a tumoricidal complex, was shown to trigger proliferation in immortalized human neural stem cells (hNSCs). In this study, I investigated the effects of HAMLET on the survivability, proliferation and neuronal differentiation of primary mou...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/39491 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-39491 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-394912023-02-28T18:02:07Z HAMLET mediates neural stem cell proliferation and differentiation. Tay, Wei Ting. School of Biological Sciences National Neuroscience Institute Zeng Li DRNTU::Science::Biological sciences::Biochemistry HAMLET (Human alpha-lactalbumin made lethal to tumor cells), a tumoricidal complex, was shown to trigger proliferation in immortalized human neural stem cells (hNSCs). In this study, I investigated the effects of HAMLET on the survivability, proliferation and neuronal differentiation of primary mouse embryonic neural stem cells (NSCs) in vitro. This is because primary NSCs closely mimic the physiological conditions of the cells in vivo. NSCs obtained from the sub ventricular zone (SVZ) of E14 mouse fetuses were propagated as neurospheres and cultured with or without HAMLET at two concentrations (0.05μg/μl, 0.1μg/μl) for 0.5 hour and 1.5 hour. The survivability of embryonic NSCs was determined by Trypan blue exclusion assay, while cell proliferation was assayed by bromodeoxyuridine (BrdU) incorporation assay. In addition, I assayed the NSC differentiation 4 days post-differentiation via immunocytochemistry. My findings indicated that HAMLET induces cell death in NSCs in a dose- and time-dependent manner. In addition, HAMLET also significantly decrease proliferation and increase neuronal differentiation in NSCs at both concentrations upon 0.5h treatment. Taken together, my results indicate that HAMLET, other than being a tumoricidal agent, may have important implications in selectively promoting neuronal differentiation in NSCs for treatment against neurodegenerative diseases. Bachelor of Science in Biological Sciences 2010-05-27T06:05:56Z 2010-05-27T06:05:56Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/39491 en Nanyang Technological University 27 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Biochemistry |
spellingShingle |
DRNTU::Science::Biological sciences::Biochemistry Tay, Wei Ting. HAMLET mediates neural stem cell proliferation and differentiation. |
description |
HAMLET (Human alpha-lactalbumin made lethal to tumor cells), a tumoricidal complex, was shown to trigger proliferation in immortalized human neural stem cells (hNSCs). In this study, I investigated the effects of HAMLET on the survivability, proliferation and neuronal differentiation of primary mouse embryonic neural stem cells (NSCs) in vitro. This is because primary NSCs closely mimic the physiological conditions of the cells in vivo. NSCs obtained from the sub ventricular zone (SVZ) of E14 mouse fetuses were propagated as neurospheres and cultured with or without HAMLET at two concentrations (0.05μg/μl, 0.1μg/μl) for 0.5 hour and 1.5 hour. The survivability of embryonic NSCs was determined by Trypan blue exclusion assay, while cell proliferation was assayed by bromodeoxyuridine (BrdU) incorporation assay. In addition, I assayed the NSC differentiation 4 days post-differentiation via immunocytochemistry. My findings indicated that HAMLET induces cell death in NSCs in a dose- and time-dependent manner. In addition, HAMLET also significantly decrease proliferation and increase neuronal differentiation in NSCs at both concentrations upon 0.5h treatment. Taken together, my results indicate that HAMLET, other than being a tumoricidal agent, may have important implications in selectively promoting neuronal differentiation in NSCs for treatment against neurodegenerative diseases. |
author2 |
School of Biological Sciences |
author_facet |
School of Biological Sciences Tay, Wei Ting. |
format |
Final Year Project |
author |
Tay, Wei Ting. |
author_sort |
Tay, Wei Ting. |
title |
HAMLET mediates neural stem cell proliferation and differentiation. |
title_short |
HAMLET mediates neural stem cell proliferation and differentiation. |
title_full |
HAMLET mediates neural stem cell proliferation and differentiation. |
title_fullStr |
HAMLET mediates neural stem cell proliferation and differentiation. |
title_full_unstemmed |
HAMLET mediates neural stem cell proliferation and differentiation. |
title_sort |
hamlet mediates neural stem cell proliferation and differentiation. |
publishDate |
2010 |
url |
http://hdl.handle.net/10356/39491 |
_version_ |
1759853920041041920 |