Energy balance of a long endurance solar powered UAV

Renewable energy will be the next important source of energy to the human earth and to the concept of unmanned aerial vehicles (UAV). The key to UAV design concepts will be its endurance. With a longer duration up in the sky, more information can be gathered for reconnaissance and surveillance missi...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Jii Yan.
Other Authors: Ng Heong Wah
Format: Final Year Project
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10356/45091
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Renewable energy will be the next important source of energy to the human earth and to the concept of unmanned aerial vehicles (UAV). The key to UAV design concepts will be its endurance. With a longer duration up in the sky, more information can be gathered for reconnaissance and surveillance missions. The methodology to achieving this will be to use solar energy which is readily available to seek maximum endurance for solar unmanned aerial vehicles (SUAV). Towards designing a solar UAV, the basis of this project will largely revolve around energy collection and balancing the energy consumption of the UAV. Through solar cells encapsulated onto the UAV, solar energy can be harnessed throughout the day period in an equatorial region like Singapore where solar energy is in abundance. However, battery cells are also required to supply energy during the night periods whereby solar energy is unavailable. Hence, the energy model has to be precise in detailing the consumption rate of the UAV to ensure the UAV is able to sustain at the given altitude for long durations. Weight of the UAV will be crucial to the design as well as the surface area of the solar cells. Energy consumption for the onboard mechanisms will have to be carefully accounted for to ensure the best possible scenario for the UAV.