Towards the delivery of nano devices for functioning inside a living cell

Shape Memory Materials (SMMs) are novel materials that have the ability to recover their original shape even after severe deformations. There has been much interest surrounding this type of materials, due to this Shape Memory Effect property. Moreover, a wide variety of different breeds of...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Li Wen.
Other Authors: Huang Weimin
Format: Final Year Project
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10356/46065
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-46065
record_format dspace
spelling sg-ntu-dr.10356-460652023-03-04T19:07:21Z Towards the delivery of nano devices for functioning inside a living cell Lim, Li Wen. Huang Weimin Zheng Lianxi School of Mechanical and Aerospace Engineering DRNTU::Engineering::Bioengineering Shape Memory Materials (SMMs) are novel materials that have the ability to recover their original shape even after severe deformations. There has been much interest surrounding this type of materials, due to this Shape Memory Effect property. Moreover, a wide variety of different breeds of SMM can be produced to suit different applications. In this report, the focus will be on Shape Memory Polymers (SMPs), a class of SMM, to assess its viability to be applied to Biomedical technology. SMPs are a cheaper alternative to its SMM counterparts, lightweight, and most importantly biocompatible. Some are even biodegradable. SMP wires are fabricated to obtain a coiled permanent shape, after which they are straightened to a temporary shape by heating it to above its glass transition temperature, Tg. Two separate tests were carried out to test the recovery of the wires in toad embryo. In the first test, the SMP wire was injected into the eggs immediately after fabrication. Observations were then made at room temperature (25°C), and when the egg sample was heated to different temperatures. Significant recovery was observed at a temperature of 45°C In the second test, the initial condition of the SMP wire was altered. It was immersed in water for a day before insertion, and left in the eggs for a week before the heating process. Slight recovery was found even before the heating process. Furthermore, signs of significant recovery in this second test was evident at 37.5°C, similar to the human body temperature. This result is parallel to evidence of decreased Tg of SMPs when exposed to moisture. This means that the SMP absorbed moisture, which changed its structure, and lower energy is now required for the SMP to return to its original shape. Bachelor of Engineering (Mechanical Engineering) 2011-06-28T08:12:30Z 2011-06-28T08:12:30Z 2011 2011 Final Year Project (FYP) http://hdl.handle.net/10356/46065 en Nanyang Technological University 46 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Bioengineering
spellingShingle DRNTU::Engineering::Bioengineering
Lim, Li Wen.
Towards the delivery of nano devices for functioning inside a living cell
description Shape Memory Materials (SMMs) are novel materials that have the ability to recover their original shape even after severe deformations. There has been much interest surrounding this type of materials, due to this Shape Memory Effect property. Moreover, a wide variety of different breeds of SMM can be produced to suit different applications. In this report, the focus will be on Shape Memory Polymers (SMPs), a class of SMM, to assess its viability to be applied to Biomedical technology. SMPs are a cheaper alternative to its SMM counterparts, lightweight, and most importantly biocompatible. Some are even biodegradable. SMP wires are fabricated to obtain a coiled permanent shape, after which they are straightened to a temporary shape by heating it to above its glass transition temperature, Tg. Two separate tests were carried out to test the recovery of the wires in toad embryo. In the first test, the SMP wire was injected into the eggs immediately after fabrication. Observations were then made at room temperature (25°C), and when the egg sample was heated to different temperatures. Significant recovery was observed at a temperature of 45°C In the second test, the initial condition of the SMP wire was altered. It was immersed in water for a day before insertion, and left in the eggs for a week before the heating process. Slight recovery was found even before the heating process. Furthermore, signs of significant recovery in this second test was evident at 37.5°C, similar to the human body temperature. This result is parallel to evidence of decreased Tg of SMPs when exposed to moisture. This means that the SMP absorbed moisture, which changed its structure, and lower energy is now required for the SMP to return to its original shape.
author2 Huang Weimin
author_facet Huang Weimin
Lim, Li Wen.
format Final Year Project
author Lim, Li Wen.
author_sort Lim, Li Wen.
title Towards the delivery of nano devices for functioning inside a living cell
title_short Towards the delivery of nano devices for functioning inside a living cell
title_full Towards the delivery of nano devices for functioning inside a living cell
title_fullStr Towards the delivery of nano devices for functioning inside a living cell
title_full_unstemmed Towards the delivery of nano devices for functioning inside a living cell
title_sort towards the delivery of nano devices for functioning inside a living cell
publishDate 2011
url http://hdl.handle.net/10356/46065
_version_ 1759852913868406784