Efficient EEG frequency band selection techniques for a robust motor imagery based brain-computer interface
Recently, Electroencephalogram (EEG)-based Brain-Computer Interfaces (BCIs) have become a hot topic in the study of neural engineering, rehabilitation and brain science. BCIs translate human intentions into control signals to establish a direct communication channel between the human brain and outpu...
Saved in:
主要作者: | Kavitha P. Thomas |
---|---|
其他作者: | Guan Cuntai |
格式: | Theses and Dissertations |
語言: | English |
出版: |
2011
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/46231 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A new framework for automatic detection of motor and mental imagery EEG signals for robust BCI systems
由: Yu, Xiaojun, et al.
出版: (2022) -
Neural signal processing techniques to analyse motor functions in EEG-based brain-computer interfaces
由: Vikram, Shenoy Handiru
出版: (2018) -
Study of low frequency FOPEN imaging
由: Na, Yibo
出版: (2008) -
Motor imagery classification based on deep learning
由: Geng, Zhiheng
出版: (2023) -
Detection and tracking of small targets in maritime infrared imagery
由: Muruganandan, Raghavi
出版: (2016)