Growing and pruning (GAP) RBF networks for call admission control in ATM traffic management
This thesis presents a study on the use of recently developed neural networks MRAN (Minimal Resource Allocation Network) and GAP (Growing and Pruning neural network) for the performance enhancement of Call Admission Control in Asynchronous Transfer Mode (ATM) networks. GAP and MRAN generate a minima...
Saved in:
主要作者: | Mohit Aiyar |
---|---|
其他作者: | Narasimhan Sundararajan |
格式: | Theses and Dissertations |
出版: |
2008
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/4905 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
相似書籍
-
Pruning methods for RBF networks
由: Tarannum Shakir.
出版: (2008) -
Neural network based ATM admission controller
由: Joice Yanto
出版: (2008) -
QoS and traffic shaping in ATM networks
由: Pratik Srivastava.
出版: (2008) -
Neural networks for ATM traffic control
由: Ng, Hock Soon.
出版: (2008) -
A study of traffic shaping on ATM
由: Lim, Cheng Heng.
出版: (2008)