Fully-additive printed electronics : synthesis and characterization of selenophene-based p-type organic semiconductor, and formulation of P(VDF-TrFE)-based nanocomposite dielectric
This thesis pertains to printed electronics (PE), particularly to the first and second chains of the PE supply chain - Materials and Printing. In the Materials supply chain, the first objective is to design and synthesize novel π-conjugated organic semiconductor materials for organic photovoltaics (...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/65570 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This thesis pertains to printed electronics (PE), particularly to the first and second chains of the PE supply chain - Materials and Printing. In the Materials supply chain, the first objective is to design and synthesize novel π-conjugated organic semiconductor materials for organic photovoltaics (OPVs) and organic field-effect transistors (OFETs). The second objective is to formulate screen-printable high-k polymer nanocomposite dielectric inks for OFETs. In the Printing supply chain, the objective is to apply the synthesized or formulated materials to realize fully-additive (vis-à-vis subtractive or a combination of additive and subtractive) printed OFETs on flexible substrates. |
---|