Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling

Bacterial cells can switch between two life styles, namely planktonic and biofilm, depending on different environmental cues. Biofilms are involved in almost 80% of microbial infections. Biofilm infections can evade host immune attack and develop into chronic conditions, which cannot be efficiently...

Full description

Saved in:
Bibliographic Details
Main Author: Cai, Zhao
Other Authors: Staffan Kjelleberg
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/69468
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-69468
record_format dspace
spelling sg-ntu-dr.10356-694682021-03-20T13:35:39Z Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling Cai, Zhao Staffan Kjelleberg Interdisciplinary Graduate School (IGS) Singapore Centre for Environmental Life Science Engineering (SCELSE) Michael Givskov DRNTU::Science::Biological sciences Bacterial cells can switch between two life styles, namely planktonic and biofilm, depending on different environmental cues. Biofilms are involved in almost 80% of microbial infections. Biofilm infections can evade host immune attack and develop into chronic conditions, which cannot be efficiently eradicated by conventional antimicrobial treatments. In most Gram-negative bacteria, biofilm formation can be regulated by a secondary messenger, bis-(3'-5')-cyclic dimeric guanosine monophos-phate, c-di-GMP. Variations in intracellular c-di-GMP levels may change cellular metabolic profile and lead to the expression of specific biomarkers. The identification of such biomarkers modulated by c-di-GMP might provide alternative methods to diagnose biofilm-related infections. In this study, we applied RNA-sequencing (RNA-seq) and High Performance Liquid Chromatography (LC/MS) techniques to analyse the transcript-me and metabolome of Pseudomonas aeruginosa, Burkholderia cenocepacia and Klebsie-lla pneumoniae cells which are genetically modified to have either excessive or reduced intracellular c-di-GMP levels, in hope to discover possible common cross-species biomarkers. At transcriptional level, one common gene, metE that encodes 5-methyl-tetrahydropte-royl-triglutamate-homocysteine S-methyltransferase was found to be significantly upregulated in the presence of excessive amount of c-di-GMP in both P. aeruginosa PAO1 and B. cenocepacia H111 strains. At metabolic level, 2 common metabolites were found to be significantly overproduced in both P. aeruginosa and K. pneumonia under high intracellular c-di-GMP content, whereas 15 of that were found in both P. aeruginosa and B. cenocepacia. Transcriptomics analysis also indicated that global regulators such as c-di-GMP, quorum sensing and alternative sigma factors coordinately have regulatory capability on the production of virulence factors in P. aeruginosa. We therefore took a step further to investigate the regulation of virulence factor secretion by alternative sigma factor RpoN by both genotypic and phenotypic analysis. The results indicated that RpoN modulates virulence secretion through a PQS quorum sensing regulator, pqsR. This study provides evidence for the possible detection and diagnosis of biofilm infections in clinical prospective using c-di-GMP regulated metabolites; it also demonstrates the complex connections and regulations among global regulators at the same time. Doctor of Philosophy (IGS) 2017-01-24T08:46:33Z 2017-01-24T08:46:33Z 2017 Thesis Cai, Z. (2017). Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/69468 10.32657/10356/69468 en 250 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Science::Biological sciences
spellingShingle DRNTU::Science::Biological sciences
Cai, Zhao
Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
description Bacterial cells can switch between two life styles, namely planktonic and biofilm, depending on different environmental cues. Biofilms are involved in almost 80% of microbial infections. Biofilm infections can evade host immune attack and develop into chronic conditions, which cannot be efficiently eradicated by conventional antimicrobial treatments. In most Gram-negative bacteria, biofilm formation can be regulated by a secondary messenger, bis-(3'-5')-cyclic dimeric guanosine monophos-phate, c-di-GMP. Variations in intracellular c-di-GMP levels may change cellular metabolic profile and lead to the expression of specific biomarkers. The identification of such biomarkers modulated by c-di-GMP might provide alternative methods to diagnose biofilm-related infections. In this study, we applied RNA-sequencing (RNA-seq) and High Performance Liquid Chromatography (LC/MS) techniques to analyse the transcript-me and metabolome of Pseudomonas aeruginosa, Burkholderia cenocepacia and Klebsie-lla pneumoniae cells which are genetically modified to have either excessive or reduced intracellular c-di-GMP levels, in hope to discover possible common cross-species biomarkers. At transcriptional level, one common gene, metE that encodes 5-methyl-tetrahydropte-royl-triglutamate-homocysteine S-methyltransferase was found to be significantly upregulated in the presence of excessive amount of c-di-GMP in both P. aeruginosa PAO1 and B. cenocepacia H111 strains. At metabolic level, 2 common metabolites were found to be significantly overproduced in both P. aeruginosa and K. pneumonia under high intracellular c-di-GMP content, whereas 15 of that were found in both P. aeruginosa and B. cenocepacia. Transcriptomics analysis also indicated that global regulators such as c-di-GMP, quorum sensing and alternative sigma factors coordinately have regulatory capability on the production of virulence factors in P. aeruginosa. We therefore took a step further to investigate the regulation of virulence factor secretion by alternative sigma factor RpoN by both genotypic and phenotypic analysis. The results indicated that RpoN modulates virulence secretion through a PQS quorum sensing regulator, pqsR. This study provides evidence for the possible detection and diagnosis of biofilm infections in clinical prospective using c-di-GMP regulated metabolites; it also demonstrates the complex connections and regulations among global regulators at the same time.
author2 Staffan Kjelleberg
author_facet Staffan Kjelleberg
Cai, Zhao
format Theses and Dissertations
author Cai, Zhao
author_sort Cai, Zhao
title Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
title_short Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
title_full Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
title_fullStr Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
title_full_unstemmed Identification of potential common cyclic-di-GMP regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
title_sort identification of potential common cyclic-di-gmp regulated biomarkers among three gram negative bacteria via transcriptomic and metabolomic profiling
publishDate 2017
url http://hdl.handle.net/10356/69468
_version_ 1696984389592809472