Photochrome aptamer switch assay
Aptamers are known to undergo adaptive conformational change upon ligand binding, causing micro-environment rearrangements that may be linked with stilbene transducers. Stilbene displays fluorescence decay upon on continuous excitation, which is sensitive to micro-environment sterics. This thesis hy...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/69585 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-69585 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-695852023-03-04T16:47:15Z Photochrome aptamer switch assay Zhou, Yubin Terry W.J. Steele School of Materials Science & Engineering DRNTU::Engineering::Materials Aptamers are known to undergo adaptive conformational change upon ligand binding, causing micro-environment rearrangements that may be linked with stilbene transducers. Stilbene displays fluorescence decay upon on continuous excitation, which is sensitive to micro-environment sterics. This thesis hypothesizes that fluorescence decay based biosensing can be achieved by incorporating the molecular recognition properties of aptamer with time-dependent stilbene trans-cis photodecay. Two designs were proposed and tested according to the hypothesis: 1) “competitive binding of stilbene-analyte conjugate with analyte” and 2) “stilbene-aptamer conjugate fluorescence decay correlates to analyte binding”. Malachite green aptamer (MGA) and its ligand malachite green (MG) were chosen as a model study to test the hypothesis. Prior to hypothesis investigation, experimental conditions were established and optimized. The MGA/MG binding was found to have hydrolysis-dependent photodecay, but organic additives were found to reverse the hydrolysis and ultimately stabilize the binding. For the design 1), MG-stilbene conjugates obtained for the hypothesis testing had micromolar binding affinities with appreciable photodecay. Based on the MG-stilbene conjugates analyzed, electron donating needs to be optimized towards retaining the stilbene fluorescence decay property in MG-stilbene conjugate. In the design 2), stilbene was grafted on aptamer to fabricate the stilbene aptasensor through amine-isothiocyanate click chemistry. This conjugate maintained properties of aptamer binding and stilbene fluorescence decay, where presence of MG inhibited the fluorescence decay of MGA-SITS. The fluorescence decay of this aptasensor was also sensitive to ligand tetramethylrosamine (TMR) but presented no response to another non-binding triphenyl molecule rhodamine B (RhB), displaying good selectivity. The sensitivity of the MGA-SITS aptasensor was low for MG, when compared to TMR. Future work aims to improve the performance of the fluorescence decay based aptasensor. Doctor of Philosophy (MSE) 2017-02-23T02:18:16Z 2017-02-23T02:18:16Z 2017 Thesis Zhou, Y. (2017). Photochrome aptamer switch assay. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/69585 10.32657/10356/69585 en 174 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Materials |
spellingShingle |
DRNTU::Engineering::Materials Zhou, Yubin Photochrome aptamer switch assay |
description |
Aptamers are known to undergo adaptive conformational change upon ligand binding, causing micro-environment rearrangements that may be linked with stilbene transducers. Stilbene displays fluorescence decay upon on continuous excitation, which is sensitive to micro-environment sterics. This thesis hypothesizes that fluorescence decay based biosensing can be achieved by incorporating the molecular recognition properties of aptamer with time-dependent stilbene trans-cis photodecay. Two designs were proposed and tested according to the hypothesis: 1) “competitive binding of stilbene-analyte conjugate with analyte” and 2) “stilbene-aptamer conjugate fluorescence decay correlates to analyte binding”. Malachite green aptamer (MGA) and its ligand malachite green (MG) were chosen as a model study to test the hypothesis. Prior to hypothesis investigation, experimental conditions were established and optimized. The MGA/MG binding was found to have hydrolysis-dependent photodecay, but organic additives were found to reverse the hydrolysis and ultimately stabilize the binding. For the design 1), MG-stilbene conjugates obtained for the hypothesis testing had micromolar binding affinities with appreciable photodecay. Based on the MG-stilbene conjugates analyzed, electron donating needs to be optimized towards retaining the stilbene fluorescence decay property in MG-stilbene conjugate. In the design 2), stilbene was grafted on aptamer to fabricate the stilbene aptasensor through amine-isothiocyanate click chemistry. This conjugate maintained properties of aptamer binding and stilbene fluorescence decay, where presence of MG inhibited the fluorescence decay of MGA-SITS. The fluorescence decay of this aptasensor was also sensitive to ligand tetramethylrosamine (TMR) but presented no response to another non-binding triphenyl molecule rhodamine B (RhB), displaying good selectivity. The sensitivity of the MGA-SITS aptasensor was low for MG, when compared to TMR. Future work aims to improve the performance of the fluorescence decay based aptasensor. |
author2 |
Terry W.J. Steele |
author_facet |
Terry W.J. Steele Zhou, Yubin |
format |
Theses and Dissertations |
author |
Zhou, Yubin |
author_sort |
Zhou, Yubin |
title |
Photochrome aptamer switch assay |
title_short |
Photochrome aptamer switch assay |
title_full |
Photochrome aptamer switch assay |
title_fullStr |
Photochrome aptamer switch assay |
title_full_unstemmed |
Photochrome aptamer switch assay |
title_sort |
photochrome aptamer switch assay |
publishDate |
2017 |
url |
http://hdl.handle.net/10356/69585 |
_version_ |
1759853673268117504 |