Scene understanding based on heterogeneous data fusion

Artificial intelligence has boosted human’s life; this technology has become something that will totally change people’s life in the future. Scene understanding is one of the most popular research areas under this topic. This project focuses on developing a high-performance deep learning neural netw...

Full description

Saved in:
Bibliographic Details
Main Author: Zhu, Lingzhi
Other Authors: Mao Kezhi
Format: Final Year Project
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/70755
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Artificial intelligence has boosted human’s life; this technology has become something that will totally change people’s life in the future. Scene understanding is one of the most popular research areas under this topic. This project focuses on developing a high-performance deep learning neural network which could help scene understanding model perform well in image classification. This project uses convolutional neural network as the fundamental network architecture. Nearly ten thousand images are collected, and these images are classified into 20 different classes based on image descriptions. With pre-trained Keras VGG-16 model, several sets of features are extracted from different layers. New classifiers are created and trained by passing those features through. This network achieves 0.77 mean average precision without any fine tuning. Moreover, after fine tuning process, the highest mAP score it can reach is 0.804. Experiments on testing different variables are implemented, and the results are elaborated as well. Difference between these tests are discussed as well.