High temperature lead free solder

Due to its availability and affordability, Zinc-Aluminium (Zn-Al) based alloys have been studied extensively as a possible alternative for lead based solders. Furthermore, amongst the Zn based systems, Zn-Al possesses good thermal and mechanical properties. At present, plenty of studies have been do...

全面介紹

Saved in:
書目詳細資料
主要作者: Song, Glenn Qi Xuan
其他作者: Li King Ho Holden
格式: Final Year Project
語言:English
出版: 2017
主題:
在線閱讀:http://hdl.handle.net/10356/71587
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Due to its availability and affordability, Zinc-Aluminium (Zn-Al) based alloys have been studied extensively as a possible alternative for lead based solders. Furthermore, amongst the Zn based systems, Zn-Al possesses good thermal and mechanical properties. At present, plenty of studies have been done mainly on the interconnecting properties and process optimization for solder reflow. In this study, we will explore how the addition of different elements such as Magnesium (Mg) and Germanium (Ge) will affect the thermo-mechanical properties. Furthermore, the effects of phase transformation on the properties will be studied as well. Four different Zn-Al alloys – Zn-6Al (ZA), ZN-4.3Al-4.2Mg (ZAM), Zn-8.4Al-8.4Ge (ZAG) and Zn-6.5Al-0.8Mg-1.0Ge (ZAMG) are prepared in an induction furnace under an inert Ar gas atmosphere and cast into cylindrical rod. Microstructures, thermal properties, thermal expansion, electrical resistivity and thermal conductivity measurements are analysed and compared. It is found that the addition of Mg or Ge will decrease the eutectic melting point. As for the coefficient of thermal expansion (CTE), Scanning Electron Microscopy (SEM) and X-ray Fluorescence (XRF) analyses have revealed that Zinc rich hexagonal closed packed (hcp) phase is responsible for the CTE differences. Increasing amount of Al content and decreasing amount of Mg or Ge content would result in the decrease inelectrical resistivity and an increase in thermal conductivity.