High speed ADC
This report presents a simulation model design of a 10-bits pipelined ADC with background calibration. The proposed architecture includes a 3-bit ADC, five 1.5-bits ADC and a 2-bit ADC in a cascade. Some non-ideal errors and offsets are introduced in the pipelined ADC during simulation to model the...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/71830 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-71830 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-718302023-07-07T16:20:00Z High speed ADC Lin, Esmond Chengyuan Chang, Joseph Sylvester School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering This report presents a simulation model design of a 10-bits pipelined ADC with background calibration. The proposed architecture includes a 3-bit ADC, five 1.5-bits ADC and a 2-bit ADC in a cascade. Some non-ideal errors and offsets are introduced in the pipelined ADC during simulation to model the pipelined ADC in reality. The background calibration is done using split ADC method by comparing each stages output of the pipelined ADC with a more accurate output source. The output source is simulated using a more accurate ADCs with lower sampling rate compared to the non-ideal ADC. A calibration algorithm is developed to estimate both extra gain and compensating offset value that should be added to the gain parameter and removed from the offset parameter respectively in each stage of the non-ideal pipelined ADC. The result of the simulation shows that the output waveform of the non-ideal pipelined ADC would gradually converge to the input signal over time with small quantization errors. However, the calibration method is used for correcting linear gain errors in pipelined ADCs. It may not be able to keep up with the error correction if the gain error is nonlinear. More improvement in the calibration method can be done in the future. Bachelor of Engineering 2017-05-19T05:30:30Z 2017-05-19T05:30:30Z 2017 Final Year Project (FYP) http://hdl.handle.net/10356/71830 en Nanyang Technological University 64 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Lin, Esmond Chengyuan High speed ADC |
description |
This report presents a simulation model design of a 10-bits pipelined ADC with background calibration. The proposed architecture includes a 3-bit ADC, five 1.5-bits ADC and a 2-bit ADC in a cascade. Some non-ideal errors and offsets are introduced in the pipelined ADC during simulation to model the pipelined ADC in reality. The background calibration is done using split ADC method by comparing each stages output of the pipelined ADC with a more accurate output source. The output source is simulated using a more accurate ADCs with lower sampling rate compared to the non-ideal ADC. A calibration algorithm is developed to estimate both extra gain and compensating offset value that should be added to the gain parameter and removed from the offset parameter respectively in each stage of the non-ideal pipelined ADC. The result of the simulation shows that the output waveform of the non-ideal pipelined ADC would gradually converge to the input signal over time with small quantization errors. However, the calibration method is used for correcting linear gain errors in pipelined ADCs. It may not be able to keep up with the error correction if the gain error is nonlinear. More improvement in the calibration method can be done in the future. |
author2 |
Chang, Joseph Sylvester |
author_facet |
Chang, Joseph Sylvester Lin, Esmond Chengyuan |
format |
Final Year Project |
author |
Lin, Esmond Chengyuan |
author_sort |
Lin, Esmond Chengyuan |
title |
High speed ADC |
title_short |
High speed ADC |
title_full |
High speed ADC |
title_fullStr |
High speed ADC |
title_full_unstemmed |
High speed ADC |
title_sort |
high speed adc |
publishDate |
2017 |
url |
http://hdl.handle.net/10356/71830 |
_version_ |
1772827452840607744 |