Robust real-time visual tracking

Robust visual tracking plays an important role in many applications such as security surveillance, human-computer interaction and video analytics. Given the position of a target in the first frame of a video clip, the objective is to track the target in following frames of this sequence. Although ma...

Full description

Saved in:
Bibliographic Details
Main Author: Liu, Ting
Other Authors: Jiang Xudong
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72678
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Robust visual tracking plays an important role in many applications such as security surveillance, human-computer interaction and video analytics. Given the position of a target in the first frame of a video clip, the objective is to track the target in following frames of this sequence. Although many promising trackers have been proposed and achieved fairly good performance in simple environment, it is still very challenging to efficiently track arbitrary objects in complicated situations, especially when appearance changes significantly and heavy occlusion occurs. In this thesis we present four different tracking algorithms which exploit the sparse coding, part-based model, color feature learning and convolutional network features to handle the aforementioned challenges.Extensive experiments have been done respectively to prove the effectiveness of our proposed trackers.