Engineering saccharomyces for biofuel production improvement

The continuous use of fossil fuels has led to many issues such as energy crisis, environmental change and etc. People are seeking cleaner and more sustainable energy resources to replace traditional fossil fuels. Microbial conversion of renewable feedstock into biofuels and chemicals has been invest...

Full description

Saved in:
Bibliographic Details
Main Author: Qiu, Zilong
Other Authors: Lau Wai Man
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/72681
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-72681
record_format dspace
spelling sg-ntu-dr.10356-726812023-03-03T16:02:01Z Engineering saccharomyces for biofuel production improvement Qiu, Zilong Lau Wai Man School of Chemical and Biomedical Engineering DRNTU::Engineering::Chemical engineering::Fuel The continuous use of fossil fuels has led to many issues such as energy crisis, environmental change and etc. People are seeking cleaner and more sustainable energy resources to replace traditional fossil fuels. Microbial conversion of renewable feedstock into biofuels and chemicals has been investigated extensively in recent decades. Saccharomyces cerevisiae (S. cerevisiae) is one the most popular microbial factory applied for producing valuable chemical products. Its advantages in industrial application comes from its biological properties such as post-translational modifications, less possibility of contamination, robustness towards harsh industrial condition, good tolerance to inhibitory compounds and etc. Among various biofuels, bioethanol is a natural product of yeast. Moreover, fatty acids and their derivatives are energy-rich molecules and considered as excellent candidates for renewable liquid transport fuels and chemicals. In this study, transcription engineering on RNA polymerase II (RNAP II) was conducted to improve S. cerevisiae ethanol tolerance and production. Error-prone PCR was applied to engineer subunit Rpb7 of RNAP II. Random mutagenesis library of Rpb7 was constructed and subjected to screening under ethanol stress. The isolated variant M1 showed much improved resistance towards 8% and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, about 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response and etc. The systematic engineering approaches for improving S. cerevisiae alcohol tolerance were discussed next. As for fatty acids production improvement, acetyl-CoA carboxylase pathway coupled with malonyl-CoA synthetase pathway were introduced into S. cerevisiae. After 24 h fermentation with the supply of 0.38% (w/v) malonic acids, the engineered strains with enhancement in acetyl-CoA carboxylase pathway and malonyl-CoA synthetase pathway showed much improvement in fatty acids production. Specifically, the accumulated C16:0 and C18:0 in the engineered strain CEN-PAA-AB with two pathways combined reached 86.74 and 86.97 ug/108 cells respectively, which was about five-fold of the wild strain. The research in thesis has successfully improved two kinds of biofuels (ethanol and fatty acids) in S. cerevisiae through different engineering strategies. It firstly demonstrated that eukaryotic RNAP II enzyme could be an alternative gTME target in eliciting improved phenotypes. In addition, the combination of malonyl-CoA pathway with the acetyl-CoA pathway has been proved as a valid platform for improving advanced biofuel production. Doctor of Philosophy (SCBE) 2017-09-25T01:09:29Z 2017-09-25T01:09:29Z 2017 Thesis Qiu, Z. (2017). Engineering saccharomyces for biofuel production improvement. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/72681 10.32657/10356/72681 en 141 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Chemical engineering::Fuel
spellingShingle DRNTU::Engineering::Chemical engineering::Fuel
Qiu, Zilong
Engineering saccharomyces for biofuel production improvement
description The continuous use of fossil fuels has led to many issues such as energy crisis, environmental change and etc. People are seeking cleaner and more sustainable energy resources to replace traditional fossil fuels. Microbial conversion of renewable feedstock into biofuels and chemicals has been investigated extensively in recent decades. Saccharomyces cerevisiae (S. cerevisiae) is one the most popular microbial factory applied for producing valuable chemical products. Its advantages in industrial application comes from its biological properties such as post-translational modifications, less possibility of contamination, robustness towards harsh industrial condition, good tolerance to inhibitory compounds and etc. Among various biofuels, bioethanol is a natural product of yeast. Moreover, fatty acids and their derivatives are energy-rich molecules and considered as excellent candidates for renewable liquid transport fuels and chemicals. In this study, transcription engineering on RNA polymerase II (RNAP II) was conducted to improve S. cerevisiae ethanol tolerance and production. Error-prone PCR was applied to engineer subunit Rpb7 of RNAP II. Random mutagenesis library of Rpb7 was constructed and subjected to screening under ethanol stress. The isolated variant M1 showed much improved resistance towards 8% and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, about 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response and etc. The systematic engineering approaches for improving S. cerevisiae alcohol tolerance were discussed next. As for fatty acids production improvement, acetyl-CoA carboxylase pathway coupled with malonyl-CoA synthetase pathway were introduced into S. cerevisiae. After 24 h fermentation with the supply of 0.38% (w/v) malonic acids, the engineered strains with enhancement in acetyl-CoA carboxylase pathway and malonyl-CoA synthetase pathway showed much improvement in fatty acids production. Specifically, the accumulated C16:0 and C18:0 in the engineered strain CEN-PAA-AB with two pathways combined reached 86.74 and 86.97 ug/108 cells respectively, which was about five-fold of the wild strain. The research in thesis has successfully improved two kinds of biofuels (ethanol and fatty acids) in S. cerevisiae through different engineering strategies. It firstly demonstrated that eukaryotic RNAP II enzyme could be an alternative gTME target in eliciting improved phenotypes. In addition, the combination of malonyl-CoA pathway with the acetyl-CoA pathway has been proved as a valid platform for improving advanced biofuel production.
author2 Lau Wai Man
author_facet Lau Wai Man
Qiu, Zilong
format Theses and Dissertations
author Qiu, Zilong
author_sort Qiu, Zilong
title Engineering saccharomyces for biofuel production improvement
title_short Engineering saccharomyces for biofuel production improvement
title_full Engineering saccharomyces for biofuel production improvement
title_fullStr Engineering saccharomyces for biofuel production improvement
title_full_unstemmed Engineering saccharomyces for biofuel production improvement
title_sort engineering saccharomyces for biofuel production improvement
publishDate 2017
url http://hdl.handle.net/10356/72681
_version_ 1759855260372828160