Structural studies on proteins involved in human telomere maintenance
In order to sustain genomic stability and cellular viability, the ends of linear eukaryotic chromosomes are capped and protected by telomeres. The mechanism by which the length of telomeric DNA is maintained involves a specialized reverse transcriptase, called telomerase. This thesis focuses on t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/72778 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-72778 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-727782023-02-28T18:39:20Z Structural studies on proteins involved in human telomere maintenance Ufuk Borucu Daniela Rhodes School of Biological Sciences DRNTU::Science::Chemistry::Crystallography::Electron microscopy DRNTU::Science::Chemistry::Crystallography::X-ray crystallography DRNTU::Science::Chemistry::Analytical chemistry::Proteins In order to sustain genomic stability and cellular viability, the ends of linear eukaryotic chromosomes are capped and protected by telomeres. The mechanism by which the length of telomeric DNA is maintained involves a specialized reverse transcriptase, called telomerase. This thesis focuses on the structural investigation of two proteins that play essential roles in the regulation of different stages of telomerase activity: TCAB1 and the CST complex. TCAB1 participates in the maturation process of the telomerase RNA subunit and is critical for telomerase trafficking in vivo. Mutations in TCAB1 lead to defects in telomere maintenance and give rise to severe forms of dyskeratosis congenita (DC). The CST complex, consisting of Ctc1, Stn1 and Ten1, limits telomerase activity in the late stages of telomere elongation. CST also initiates the fill-in synthesis of the complementary strand by recruiting the Polα/Primase complex. Mutations in CST are associated with Coat Plus, DC and related diseases. In this thesis, I present various strategies for the expression and purification of TCAB1 and the CST complex and structural analysis using negative stain electron microscopy (EM). Using primary sequence analysis and computational methods, I demonstrated that TCAB1 contains seven putative WD40 repeats within its central domain rather than the five published. Using various strategies for expression of TCAB1 in E.coli, that lead to aggregated protein, it was published that TCAB1 folding requires an elaborate machinery including the TCP-Ring Complex (TRiC) that is only present in higher eukaryotes. For the CST complex, I found that expression of full length Ctc1 in E.coli was not feasible and that it necessitated co-expression with Stn1 and Ten1. This was achieved by setting up MultiBac expression in insect cells. Results are presented for a purification strategy for obtaining a pure complex that contains stoichiometric amounts of the three proteins in mg quantities. As an initial stage to determining the cryo-EM structure, I present a low-resolution threedimensional structure (25Å) of the CST complex obtained using negative stain EM and single-particle reconstruction. Finally, I describe strategies to obtain a higher resolution structure bound to telomeric DNA. Doctor of Philosophy (SBS) 2017-11-13T13:07:38Z 2017-11-13T13:07:38Z 2017 Thesis Ufuk Borucu. (2017). Structural studies on proteins involved in human telomere maintenance. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/72778 10.32657/10356/72778 en 192 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry::Crystallography::Electron microscopy DRNTU::Science::Chemistry::Crystallography::X-ray crystallography DRNTU::Science::Chemistry::Analytical chemistry::Proteins |
spellingShingle |
DRNTU::Science::Chemistry::Crystallography::Electron microscopy DRNTU::Science::Chemistry::Crystallography::X-ray crystallography DRNTU::Science::Chemistry::Analytical chemistry::Proteins Ufuk Borucu Structural studies on proteins involved in human telomere maintenance |
description |
In order to sustain genomic stability and cellular viability, the ends of linear
eukaryotic chromosomes are capped and protected by telomeres. The mechanism by
which the length of telomeric DNA is maintained involves a specialized reverse
transcriptase, called telomerase. This thesis focuses on the structural investigation of two
proteins that play essential roles in the regulation of different stages of telomerase
activity: TCAB1 and the CST complex. TCAB1 participates in the maturation process of the
telomerase RNA subunit and is critical for telomerase trafficking in vivo. Mutations in
TCAB1 lead to defects in telomere maintenance and give rise to severe forms of
dyskeratosis congenita (DC). The CST complex, consisting of Ctc1, Stn1 and Ten1, limits
telomerase activity in the late stages of telomere elongation. CST also initiates the fill-in
synthesis of the complementary strand by recruiting the Polα/Primase complex.
Mutations in CST are associated with Coat Plus, DC and related diseases. In this thesis, I
present various strategies for the expression and purification of TCAB1 and the CST
complex and structural analysis using negative stain electron microscopy (EM). Using
primary sequence analysis and computational methods, I demonstrated that TCAB1
contains seven putative WD40 repeats within its central domain rather than the five
published. Using various strategies for expression of TCAB1 in E.coli, that lead to
aggregated protein, it was published that TCAB1 folding requires an elaborate machinery
including the TCP-Ring Complex (TRiC) that is only present in higher eukaryotes. For the
CST complex, I found that expression of full length Ctc1 in E.coli was not feasible and that
it necessitated co-expression with Stn1 and Ten1. This was achieved by setting up MultiBac
expression in insect cells. Results are presented for a purification strategy for obtaining a
pure complex that contains stoichiometric amounts of the three proteins in mg quantities.
As an initial stage to determining the cryo-EM structure, I present a low-resolution threedimensional
structure (25Å) of the CST complex obtained using negative stain EM and
single-particle reconstruction. Finally, I describe strategies to obtain a higher resolution
structure bound to telomeric DNA. |
author2 |
Daniela Rhodes |
author_facet |
Daniela Rhodes Ufuk Borucu |
format |
Theses and Dissertations |
author |
Ufuk Borucu |
author_sort |
Ufuk Borucu |
title |
Structural studies on proteins involved in human telomere maintenance |
title_short |
Structural studies on proteins involved in human telomere maintenance |
title_full |
Structural studies on proteins involved in human telomere maintenance |
title_fullStr |
Structural studies on proteins involved in human telomere maintenance |
title_full_unstemmed |
Structural studies on proteins involved in human telomere maintenance |
title_sort |
structural studies on proteins involved in human telomere maintenance |
publishDate |
2017 |
url |
http://hdl.handle.net/10356/72778 |
_version_ |
1759855209464463360 |