Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation
Transition metal-catalyzed C–H activation has become a powerful approach for atom- and step-economical synthesis. From a sustainable point of view, the use of earth-abundant transition metals in C–H activation is highly desirable. In this context, cobalt-catalyzed C–H activation has received growing...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/73039 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-73039 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-730392023-02-28T23:45:09Z Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation Xu, Wengang Naohiko Yoshikai School of Physical and Mathematical Sciences DRNTU::Science::Chemistry::Organic chemistry Transition metal-catalyzed C–H activation has become a powerful approach for atom- and step-economical synthesis. From a sustainable point of view, the use of earth-abundant transition metals in C–H activation is highly desirable. In this context, cobalt-catalyzed C–H activation has received growing interest. The last several years of research has demonstrated that both low-valent and high-valent cobalt species can be engaged in a variety of C–H functionalization reactions, but still in its infancy. This thesis describes low-valent cobalt-catalyzed C–C bond-forming reactions via directed C–H activation, with a particular focus on the development of novel catalytic systems and directing groups. Chapter 2 reports on a highly linear-selective hydroarylation reaction of styrenes via ketimine-directed C–H activation. The systematic development of a novel triarylphosphine ligand, in combination with fine tuning of other reaction conditions, enabled us to reverse the intrinsic branched selectivity of typical cobalt catalysts in this type of reaction. Chapter 3 describes the use of metallic magnesium as an effective reductant for the cobalt-catalyzed C–H functionalization. While air- and moisture-sensitive Grignard reagents have been typically employed as reductants, the present study has demonstrated that magnesium serves as a viable alternative in a series of imine-directed olefin hydroarylation reactions. Chapters 4–6 report on the utility of N–H imine as a directing group for cobalt-catalyzed C–H functionalization. As described in Chapter 4, this directing group was first identified as a powerful directing group for the hydroarylation of vinylsilane and alkyl olefins. A series of otherwise difficult hydroarylation reactions, including ortho-tetraalkylation of benzophenone imines have been achieved. Chapter 5 describes an extension of the N–H imine-directed hydroarylation to styrene derivatives, where intriguing substrate- or ligand-dependent regioselectivity of C–H activation and C–C bond formation was observed. Finally, Chapter 6 focuses on the use of pivaloyl N–H imine as a transformable directing group. This N–H imine not only efficiently promotes cobalt-catalyzed ortho C–H functionalization reactions with alkyl, aryl, and alkenyl electrophiles, but also readily undergo fragmentation into a nitrile functional group, thus enabling facile preparation of ortho-substituted benzonitriles. Doctor of Philosophy (SPMS) 2017-12-26T04:22:26Z 2017-12-26T04:22:26Z 2017 Thesis Xu, W. (2017). Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/73039 10.32657/10356/73039 en 294 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry::Organic chemistry |
spellingShingle |
DRNTU::Science::Chemistry::Organic chemistry Xu, Wengang Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
description |
Transition metal-catalyzed C–H activation has become a powerful approach for atom- and step-economical synthesis. From a sustainable point of view, the use of earth-abundant transition metals in C–H activation is highly desirable. In this context, cobalt-catalyzed C–H activation has received growing interest. The last several years of research has demonstrated that both low-valent and high-valent cobalt species can be engaged in a variety of C–H functionalization reactions, but still in its infancy.
This thesis describes low-valent cobalt-catalyzed C–C bond-forming reactions via directed C–H activation, with a particular focus on the development of novel catalytic systems and directing groups. Chapter 2 reports on a highly linear-selective hydroarylation reaction of styrenes via ketimine-directed C–H activation. The systematic development of a novel triarylphosphine ligand, in combination with fine tuning of other reaction conditions, enabled us to reverse the intrinsic branched selectivity of typical cobalt catalysts in this type of reaction. Chapter 3 describes the use of metallic magnesium as an effective reductant for the cobalt-catalyzed C–H functionalization. While air- and moisture-sensitive Grignard reagents have been typically employed as reductants, the present study has demonstrated that magnesium serves as a viable alternative in a series of imine-directed olefin hydroarylation reactions. Chapters 4–6 report on the utility of N–H imine as a directing group for cobalt-catalyzed C–H functionalization. As described in Chapter 4, this directing group was first identified as a powerful directing group for the hydroarylation of vinylsilane and alkyl olefins. A series of otherwise difficult hydroarylation reactions, including ortho-tetraalkylation of benzophenone imines have been achieved. Chapter 5 describes an extension of the N–H imine-directed hydroarylation to styrene derivatives, where intriguing substrate- or ligand-dependent regioselectivity of C–H activation and C–C bond formation was observed. Finally, Chapter 6 focuses on the use of pivaloyl N–H imine as a transformable directing group. This N–H imine not only efficiently promotes cobalt-catalyzed ortho C–H functionalization reactions with alkyl, aryl, and alkenyl electrophiles, but also readily undergo fragmentation into a nitrile functional group, thus enabling facile preparation of ortho-substituted benzonitriles. |
author2 |
Naohiko Yoshikai |
author_facet |
Naohiko Yoshikai Xu, Wengang |
format |
Theses and Dissertations |
author |
Xu, Wengang |
author_sort |
Xu, Wengang |
title |
Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
title_short |
Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
title_full |
Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
title_fullStr |
Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
title_full_unstemmed |
Low-valent cobalt-catalyzed C-C bond formation through imine-directed C-H activation |
title_sort |
low-valent cobalt-catalyzed c-c bond formation through imine-directed c-h activation |
publishDate |
2017 |
url |
http://hdl.handle.net/10356/73039 |
_version_ |
1759855476645822464 |