Visual analytics for aircraft identification
Computer vision has been used to tackle various problems in object recognition and image classification. In the air traffic control scene, the identification of aircraft is a process that can be automated with the advancement in computer vision solutions. This report aims to study and evaluate the e...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/77867 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Computer vision has been used to tackle various problems in object recognition and image classification. In the air traffic control scene, the identification of aircraft is a process that can be automated with the advancement in computer vision solutions. This report aims to study and evaluate the effectiveness of 2 different image classification methods, SIFT and CNN, for identifying aircraft based on images and to subsequently propose a feasible implementation. Performance is primarily evaluated using the metric of accuracy, but other factors like ease of computation and implementation will be considered as well. For this project, we conducted a test on the feasibility of using SIFT as a feature extractor. However, the tests show that it is not able to draw accurate keypoints apart from the airline’s paintjob and hence is not a viable solution. We then develop and test implementations of MobileNet and find that it achieves impressive accuracies of 70.3%, 64.8%, and 47.7% for identification of manufacturer, family and variant respectively. |
---|