Biomolecule nanosensing
Detection of genetically modified food through Real-Time Polymerase Chain Reaction (RT PCR) involves the use of expensive fluorescence labels. In this study, comparison between three nano-graphene oxide (GO) materials (HO Nano-400, TO SGNF, and HO PyroG) was conducted in order to find out which nano...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/78959 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-78959 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-789592023-02-28T23:14:25Z Biomolecule nanosensing Neo, Yong Yee Alessandra Bonanni School of Physical and Mathematical Sciences Science::Chemistry Detection of genetically modified food through Real-Time Polymerase Chain Reaction (RT PCR) involves the use of expensive fluorescence labels. In this study, comparison between three nano-graphene oxide (GO) materials (HO Nano-400, TO SGNF, and HO PyroG) was conducted in order to find out which nano-GO material would be a more suitable candidate as electrochemical labels in place of the traditional fluorescence labels. Electrochemical characterization including X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, differential pulse voltammetry, square-wave voltammetry as well as electrochemical impedance spectroscopy (EIS) was performed across varying concentrations of nano-GO. Conjugation of nano-GO materials with single-stranded DNA via covalent bonding was carried out and electrochemical characterization was repeated on the conjugated nano-GO materials. A significant electrochemical signal for all nano-GO materials was still observed after conjugation with single-stranded DNA corresponding to the DNA primer sequence. Hybridization of one of the conjugated nano-GOs (HO PyroG) with complementary strand (Sequence 1) was carried out as a preliminary study due to its better electroanalytical performance. Electrochemical characterization was also performed where a reduction of electrochemical signal of the hybrid was observed. Further characterization was performed using techniques including attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and fluorescence were carried out on these materials to monitor if the conjugation of sequence to nano-GO materials was successful. With that, the findings in this study are essential toward finding a strategy for electrochemical PCR, in place of the traditional and thus expensive RT PCR. Bachelor of Science in Chemistry and Biological Chemistry 2019-11-13T00:55:40Z 2019-11-13T00:55:40Z 2019 Final Year Project (FYP) http://hdl.handle.net/10356/78959 en 41 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Chemistry |
spellingShingle |
Science::Chemistry Neo, Yong Yee Biomolecule nanosensing |
description |
Detection of genetically modified food through Real-Time Polymerase Chain Reaction (RT PCR) involves the use of expensive fluorescence labels. In this study, comparison between three nano-graphene oxide (GO) materials (HO Nano-400, TO SGNF, and HO PyroG) was conducted in order to find out which nano-GO material would be a more suitable candidate as electrochemical labels in place of the traditional fluorescence labels. Electrochemical characterization including X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, differential pulse voltammetry, square-wave voltammetry as well as electrochemical impedance spectroscopy (EIS) was performed across varying concentrations of nano-GO. Conjugation of nano-GO materials with single-stranded DNA via covalent bonding was carried out and electrochemical characterization was repeated on the conjugated nano-GO materials. A significant electrochemical signal for all nano-GO materials was still observed after conjugation with single-stranded DNA corresponding to the DNA primer sequence. Hybridization of one of the conjugated nano-GOs (HO PyroG) with complementary strand (Sequence 1) was carried out as a preliminary study due to its better electroanalytical performance. Electrochemical characterization was also performed where a reduction of electrochemical signal of the hybrid was observed. Further characterization was performed using techniques including attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and fluorescence were carried out on these materials to monitor if the conjugation of sequence to nano-GO materials was successful. With that, the findings in this study are essential toward finding a strategy for electrochemical PCR, in place of the traditional and thus expensive RT PCR. |
author2 |
Alessandra Bonanni |
author_facet |
Alessandra Bonanni Neo, Yong Yee |
format |
Final Year Project |
author |
Neo, Yong Yee |
author_sort |
Neo, Yong Yee |
title |
Biomolecule nanosensing |
title_short |
Biomolecule nanosensing |
title_full |
Biomolecule nanosensing |
title_fullStr |
Biomolecule nanosensing |
title_full_unstemmed |
Biomolecule nanosensing |
title_sort |
biomolecule nanosensing |
publishDate |
2019 |
url |
http://hdl.handle.net/10356/78959 |
_version_ |
1759855299880026112 |