Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications
The layer-by-layer (LBL) polyelectrolyte deposited membranes have drawn increasing attention in various applications due to the ease of selective layer formation and their stability and versatility. In this study, the LBL deposition was performed at the inner surface of the polyethersulfone (PES) ho...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/79613 http://hdl.handle.net/10220/20938 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-79613 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-796132020-09-26T22:00:15Z Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications Liu, Chang Shi, Lei Wang, Rong School of Civil and Environmental Engineering Nanyang Environment and Water Research Institute Singapore Membrane Technology Centre DRNTU::Engineering::Environmental engineering::Water treatment The layer-by-layer (LBL) polyelectrolyte deposited membranes have drawn increasing attention in various applications due to the ease of selective layer formation and their stability and versatility. In this study, the LBL deposition was performed at the inner surface of the polyethersulfone (PES) hollow fiber substrate to form composite nanofiltration (NF) membrane. The semi-dynamic deposition procedure was adopted with the aid of syringes. The newly developed inner deposited (id-LBL) membranes were then tested in NF and forward osmosis (FO) applications and the performance were compared with outer surface deposition as well as some literature data. The id-LBL membranes could not only withstand higher operating pressure but also possess superior hardness rejection especially in high concentration mixed salt solutions (more than 95% rejection to Mg2+ and Ca2+ in a 5000 ppm total dissolved salt (TDS) mixture under 4.8 bar). As for the FO process, with only two layer deposition, the id-LBL membranes also demonstrated significant performance improvement with increased water flux (up to 70 L/m2 h using 0.5 M MgCl2 as draw solution in active layer facing draw solution configuration) and reduced salt leakage (around 0.5 g/m2 h using 1 M MgCl2 draw solution in active layer facing feed water configuration). This study suggests that for hollow fiber substrate, the inner surface is more suitable for the formation of the selective layer via LBL deposition than the outer surface. NRF (Natl Research Foundation, S’pore) EDB (Economic Devt. Board, S’pore) Accepted version 2014-09-22T07:11:04Z 2019-12-06T13:29:22Z 2014-09-22T07:11:04Z 2019-12-06T13:29:22Z 2014 2014 Journal Article Liu, C., Shi, L.,& Wang, R. (2014). Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications. Reactive and functional polymers. 1381-5148 https://hdl.handle.net/10356/79613 http://hdl.handle.net/10220/20938 10.1016/j.reactfunctpolym.2014.07.018 en Reactive and functional polymers © 2014 Elsevier B. V. This is the author created version of a work that has been peer reviewed and accepted for publication by Reactive and Functional Polymers. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.reactfunctpolym.2014.07.018]. 14 p. + 12 p. figures application/pdf application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Environmental engineering::Water treatment |
spellingShingle |
DRNTU::Engineering::Environmental engineering::Water treatment Liu, Chang Shi, Lei Wang, Rong Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
description |
The layer-by-layer (LBL) polyelectrolyte deposited membranes have drawn increasing attention in various applications due to the ease of selective layer formation and their stability and versatility. In this study, the LBL deposition was performed at the inner surface of the polyethersulfone (PES) hollow fiber substrate to form composite nanofiltration (NF) membrane. The semi-dynamic deposition procedure was adopted with the aid of syringes. The newly developed inner deposited (id-LBL) membranes were then tested in NF and forward osmosis (FO) applications and the performance were compared with outer surface deposition as well as some literature data. The id-LBL membranes could not only withstand higher operating pressure but also possess superior hardness rejection especially in high concentration mixed salt solutions (more than 95% rejection to Mg2+ and Ca2+ in a 5000 ppm total dissolved salt (TDS) mixture under 4.8 bar). As for the FO process, with only two layer deposition, the id-LBL membranes also demonstrated significant performance improvement with increased water flux (up to 70 L/m2 h using 0.5 M MgCl2 as draw solution in active layer facing draw solution configuration) and reduced salt leakage (around 0.5 g/m2 h using 1 M MgCl2 draw solution in active layer facing feed water configuration). This study suggests that for hollow fiber substrate, the inner surface is more suitable for the formation of the selective layer via LBL deposition than the outer surface. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Liu, Chang Shi, Lei Wang, Rong |
format |
Article |
author |
Liu, Chang Shi, Lei Wang, Rong |
author_sort |
Liu, Chang |
title |
Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
title_short |
Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
title_full |
Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
title_fullStr |
Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
title_full_unstemmed |
Enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
title_sort |
enhanced hollow fiber membrane performance via semi-dynamic layer-by-layer polyelectrolyte inner surface deposition for nanofiltration and forward osmosis applications |
publishDate |
2014 |
url |
https://hdl.handle.net/10356/79613 http://hdl.handle.net/10220/20938 |
_version_ |
1681057862120374272 |