Single-Crystalline W-Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature

Single-crystalline vanadium dioxide (VO2) nanostructures are of great interest because of their single-domain metal-to-insulator transition. In this paper, singlecrystalline W-doped VO2 nanobeams are synthesized for optical and electrical applications. As a result of differences in the polarization...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Ning, Duchamp, Martial, Xue, Can, Dunin-Borkowski, Rafal E., Liu, Guowei, Long, Yi
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2016
主題:
在線閱讀:https://hdl.handle.net/10356/80518
http://hdl.handle.net/10220/40746
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Single-crystalline vanadium dioxide (VO2) nanostructures are of great interest because of their single-domain metal-to-insulator transition. In this paper, singlecrystalline W-doped VO2 nanobeams are synthesized for optical and electrical applications. As a result of differences in the polarization of the beams along their transverse and longitudinal axes, dual-surface plasmon resonance peaks at 1344 and 619 nm are generated, resulting in an increase in the solar modulating abilities of the VO2 nanobeams. The conductivity of the single-crystalline W-doped VO2 nanobeams changes by three to four orders of magnitude at the transition temperature, which is of great importance for electrical applications.