An arbitrarily shaped inclusion with uniform eigencurvatures in an infinite plate, semi-infinite plate, two bonded semi-infinite plates or a circular plate
Within the framework of the Kirchhoff–Love isotropic and homogeneous plate theory, we obtain, in a unified manner, the analytic solutions to the Eshelby’s problem of an inclusion of arbitrary shape with uniform eigencurvatures in an infinite plate, a semi-infinite plate, one of two bonded semi-infin...
Saved in:
Main Authors: | Wang, Xu, Zhou, Kun |
---|---|
其他作者: | School of Mechanical and Aerospace Engineering |
格式: | Article |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/81829 http://hdl.handle.net/10220/40989 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Mixed-convection laminar film condensation on a semi-infinite vertical plate
由: Shu, Jian-Jun, et al.
出版: (2018) -
An Inclusion Of Arbitrary Shape In An Infinite Or Semi-infinite Isotropic Multilayered Plate
由: Wang, Xu, et al.
出版: (2016) -
Green's functions for infinite and semi-infinite isotropic laminated plates
由: Wang, Xu, et al.
出版: (2016) -
Semismooth Newton methods for solving semi-infinite programming problems
由: Qi, L., et al.
出版: (2016) -
Surface instability of a semi-infinite isotropic laminated plate under surface van der Waals forces
由: Wang, X., et al.
出版: (2015)