Simultaneous measurement and reconstruction tailoring for quantitative phase imaging
We propose simultaneous measurement and reconstruction tailoring (SMaRT) for quantitative phase imaging; it is a joint optimization approach to inverse problems wherein minimizing the expected end-to-end error yields optimal design parameters for both the measurement and reconstruction processes. Us...
Saved in:
Main Authors: | , , , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/81898 http://hdl.handle.net/10220/47504 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
總結: | We propose simultaneous measurement and reconstruction tailoring (SMaRT) for quantitative phase imaging; it is a joint optimization approach to inverse problems wherein minimizing the expected end-to-end error yields optimal design parameters for both the measurement and reconstruction processes. Using simulated and experimentally-collected data for a specific scenario, we demonstrate that optimizing the design of the two processes together reduces phase reconstruction error over past techniques that consider these two design problems separately. Our results suggest at times surprising design principles, and our approach can potentially inspire improved solution methods for other inverse problems in optics as well as the natural sciences. |
---|