Variational Multiscale Models for Charge Transport

This work presents a few variational multiscale models for charge transport in complex physical, chemical, and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors, and ion channels. An essential ingredient of the present models, intro...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei, Guo-Wei, Zheng, Qiong, Chen, Zhan, Xia, Kelin
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/82125
http://hdl.handle.net/10220/41110
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-82125
record_format dspace
spelling sg-ntu-dr.10356-821252023-02-28T19:32:36Z Variational Multiscale Models for Charge Transport Wei, Guo-Wei Zheng, Qiong Chen, Zhan Xia, Kelin School of Physical and Mathematical Sciences variational multiscale models ion channels This work presents a few variational multiscale models for charge transport in complex physical, chemical, and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors, and ion channels. An essential ingredient of the present models, introduced in an earlier paper [Bull. Math. Biol., 72 (2010), pp. 1562--1622], is the use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, while dynamically coupling discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation and chemical potential related energy. By using the Euler--Lagrange variation, coupled Laplace--Beltrami and Poisson--Nernst--Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson--Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst--Planck (NP) equations. Consequently, the coupled Laplace--Beltrami and Poisson--Boltzmann--Nernst--Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium Laplace--Beltrami and PB (LB-PB) theory and nonequilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at nonequilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace--Beltrami, Poisson--Nernst--Planck, and Navier--Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms are developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability of the algorithms. Extensive numerical experiments are designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field. Published version 2016-08-10T03:34:50Z 2019-12-06T14:47:09Z 2016-08-10T03:34:50Z 2019-12-06T14:47:09Z 2012 Journal Article Wei, G.-W., Zheng, Q., Chen, Z., & Xia, K. (2012). Variational Multiscale Models for Charge Transport. SIAM Review, 54(4), 699-754. 0036-1445 https://hdl.handle.net/10356/82125 http://hdl.handle.net/10220/41110 10.1137/110845690 23172978 en SIAM Review © 2012 SIAM. This paper was published in SIAM Review and is made available as an electronic reprint (preprint) with permission of SIAM. The published version is available at: [http://dx.doi.org/10.1137/110845690]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. 56 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic variational multiscale models
ion channels
spellingShingle variational multiscale models
ion channels
Wei, Guo-Wei
Zheng, Qiong
Chen, Zhan
Xia, Kelin
Variational Multiscale Models for Charge Transport
description This work presents a few variational multiscale models for charge transport in complex physical, chemical, and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors, and ion channels. An essential ingredient of the present models, introduced in an earlier paper [Bull. Math. Biol., 72 (2010), pp. 1562--1622], is the use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, while dynamically coupling discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation and chemical potential related energy. By using the Euler--Lagrange variation, coupled Laplace--Beltrami and Poisson--Nernst--Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson--Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst--Planck (NP) equations. Consequently, the coupled Laplace--Beltrami and Poisson--Boltzmann--Nernst--Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium Laplace--Beltrami and PB (LB-PB) theory and nonequilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at nonequilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace--Beltrami, Poisson--Nernst--Planck, and Navier--Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms are developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability of the algorithms. Extensive numerical experiments are designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.
author2 School of Physical and Mathematical Sciences
author_facet School of Physical and Mathematical Sciences
Wei, Guo-Wei
Zheng, Qiong
Chen, Zhan
Xia, Kelin
format Article
author Wei, Guo-Wei
Zheng, Qiong
Chen, Zhan
Xia, Kelin
author_sort Wei, Guo-Wei
title Variational Multiscale Models for Charge Transport
title_short Variational Multiscale Models for Charge Transport
title_full Variational Multiscale Models for Charge Transport
title_fullStr Variational Multiscale Models for Charge Transport
title_full_unstemmed Variational Multiscale Models for Charge Transport
title_sort variational multiscale models for charge transport
publishDate 2016
url https://hdl.handle.net/10356/82125
http://hdl.handle.net/10220/41110
_version_ 1759857780351565824