Penalized empirical likelihood inference for sparse additive hazards regression with a diverging number of covariates
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore app...
Saved in:
Main Authors: | Wang, Shanshan, Xiang, Liming |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/83404 http://hdl.handle.net/10220/41436 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Penalized empirical likelihood and growing dimensional general estimating equations
由: Leng, C., et al.
出版: (2014) -
Penalized high-dimensional empirical likelihood
由: Tang, C.Y., et al.
出版: (2014) -
A penalized likelihood approach in covariance graphical model selection
由: LIN NAN
出版: (2011) -
Empirical likelihood for least absolute relative error regression
由: Li, Z., et al.
出版: (2016) -
An empirical likelihood approach to quantile regression with auxiliary information
由: Tang, C.Y., et al.
出版: (2014)