Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance

Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of...

Full description

Saved in:
Bibliographic Details
Main Authors: Mok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, S., Hien, T. T., Htut, Y., Faiz, M. A., Onyamboko, M. A., Mayxay, M., Newton, P. N., Tripura, R., Woodrow, C. J., Miotto, O., Kwiatkowski, D. P., Nosten, F., Day, N. P. J., Preiser, P. R., White, N. J., Dondorp, A. M., Fairhurst, R. M., Bozdech, Z.
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2016
Subjects:
Online Access:https://hdl.handle.net/10356/83802
http://hdl.handle.net/10220/41453
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-83802
record_format dspace
spelling sg-ntu-dr.10356-838022020-03-07T12:18:15Z Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance Mok, S. Ashley, E. A. Ferreira, P. E. Zhu, L. Lin, Z. Yeo, T. Chotivanich, K. Imwong, M. Pukrittayakamee, S. Dhorda, M. Nguon, C. Lim, P. Amaratunga, C. Suon, S. Hien, T. T. Htut, Y. Faiz, M. A. Onyamboko, M. A. Mayxay, M. Newton, P. N. Tripura, R. Woodrow, C. J. Miotto, O. Kwiatkowski, D. P. Nosten, F. Day, N. P. J. Preiser, P. R. White, N. J. Dondorp, A. M. Fairhurst, R. M. Bozdech, Z. School of Biological Sciences Malaria parasites Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion. NMRC (Natl Medical Research Council, S’pore) 2016-09-19T04:06:57Z 2019-12-06T15:32:22Z 2016-09-19T04:06:57Z 2019-12-06T15:32:22Z 2015 Journal Article Mok, S., Ashley, E. A., Ferreira, P. E., Zhu, L., Lin, Z., Yeo, T., Chotivanich, K., Imwong, M., Pukrittayakamee, S., Dhorda, M., Nguon, C., Lim, P., Amaratunga, C., Suon, S., Hien, T. T., Htut, Y., Faiz, M. A., Onyamboko, M. A., Mayxay, M., Newton, P. N., Tripura, R., Woodrow, C. J., Miotto, O., Kwiatkowski, D. P., Nosten, F., Day, N. P. J., Preiser, P. R., White, N. J., Dondorp, A. M., Fairhurst, R. M.,& Bozdech, Z. (2015). Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science, 347(6220), 431-435. https://hdl.handle.net/10356/83802 http://hdl.handle.net/10220/41453 10.1126/science.1260403 en Science © 2016 American Association for the Advancement of Science.
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic Malaria parasites
spellingShingle Malaria parasites
Mok, S.
Ashley, E. A.
Ferreira, P. E.
Zhu, L.
Lin, Z.
Yeo, T.
Chotivanich, K.
Imwong, M.
Pukrittayakamee, S.
Dhorda, M.
Nguon, C.
Lim, P.
Amaratunga, C.
Suon, S.
Hien, T. T.
Htut, Y.
Faiz, M. A.
Onyamboko, M. A.
Mayxay, M.
Newton, P. N.
Tripura, R.
Woodrow, C. J.
Miotto, O.
Kwiatkowski, D. P.
Nosten, F.
Day, N. P. J.
Preiser, P. R.
White, N. J.
Dondorp, A. M.
Fairhurst, R. M.
Bozdech, Z.
Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
description Artemisinin resistance in Plasmodium falciparum threatens global efforts to control and eliminate malaria. Polymorphisms in the kelch domain–carrying protein K13 are associated with artemisinin resistance, but the underlying molecular mechanisms are unknown. We analyzed the in vivo transcriptomes of 1043 P. falciparum isolates from patients with acute malaria and found that artemisinin resistance is associated with increased expression of unfolded protein response (UPR) pathways involving the major PROSC and TRiC chaperone complexes. Artemisinin-resistant parasites also exhibit decelerated progression through the first part of the asexual intraerythrocytic development cycle. These findings suggest that artemisinin-resistant parasites remain in a state of decelerated development at the young ring stage, whereas their up-regulated UPR pathways mitigate protein damage caused by artemisinin. The expression profiles of UPR-related genes also associate with the geographical origin of parasite isolates, further suggesting their role in emerging artemisinin resistance in the Greater Mekong Subregion.
author2 School of Biological Sciences
author_facet School of Biological Sciences
Mok, S.
Ashley, E. A.
Ferreira, P. E.
Zhu, L.
Lin, Z.
Yeo, T.
Chotivanich, K.
Imwong, M.
Pukrittayakamee, S.
Dhorda, M.
Nguon, C.
Lim, P.
Amaratunga, C.
Suon, S.
Hien, T. T.
Htut, Y.
Faiz, M. A.
Onyamboko, M. A.
Mayxay, M.
Newton, P. N.
Tripura, R.
Woodrow, C. J.
Miotto, O.
Kwiatkowski, D. P.
Nosten, F.
Day, N. P. J.
Preiser, P. R.
White, N. J.
Dondorp, A. M.
Fairhurst, R. M.
Bozdech, Z.
format Article
author Mok, S.
Ashley, E. A.
Ferreira, P. E.
Zhu, L.
Lin, Z.
Yeo, T.
Chotivanich, K.
Imwong, M.
Pukrittayakamee, S.
Dhorda, M.
Nguon, C.
Lim, P.
Amaratunga, C.
Suon, S.
Hien, T. T.
Htut, Y.
Faiz, M. A.
Onyamboko, M. A.
Mayxay, M.
Newton, P. N.
Tripura, R.
Woodrow, C. J.
Miotto, O.
Kwiatkowski, D. P.
Nosten, F.
Day, N. P. J.
Preiser, P. R.
White, N. J.
Dondorp, A. M.
Fairhurst, R. M.
Bozdech, Z.
author_sort Mok, S.
title Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
title_short Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
title_full Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
title_fullStr Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
title_full_unstemmed Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
title_sort population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance
publishDate 2016
url https://hdl.handle.net/10356/83802
http://hdl.handle.net/10220/41453
_version_ 1681047500974194688