Hardness of k-LWE and Applications in Traitor Tracing
We introduce the k-LWE problem, a Learning With Errors variant of the k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k. We improve and extend it to an LWE to k-LWE reduction with a polynomial loss in k, by relying on a new technique involving trapdoo...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84074 http://hdl.handle.net/10220/42953 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-84074 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-840742023-02-28T19:41:21Z Hardness of k-LWE and Applications in Traitor Tracing Ling, San Phan, Duong Hieu Stehlé, Damien Steinfeld, Ron School of Physical and Mathematical Sciences Lattice-based cryptography Traitor tracing We introduce the k-LWE problem, a Learning With Errors variant of the k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k. We improve and extend it to an LWE to k-LWE reduction with a polynomial loss in k, by relying on a new technique involving trapdoors for random integer kernel lattices. Based on this hardness result, we present the first algebraic construction of a traitor tracing scheme whose security relies on the worst-case hardness of standard lattice problems. The proposed LWE traitor tracing is almost as efficient as the LWE encryption. Further, it achieves public traceability, i.e., allows the authority to delegate the tracing capability to “untrusted” parties. To this aim, we introduce the notion of projective sampling family in which each sampling function is keyed and, with a projection of the key on a well chosen space, one can simulate the sampling function in a computationally indistinguishable way. The construction of a projective sampling family from k-LWE allows us to achieve public traceability, by publishing the projected keys of the users. We believe that the new lattice tools and the projective sampling family are quite general that they may have applications in other areas. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Accepted version 2017-07-20T03:18:24Z 2019-12-06T15:37:46Z 2017-07-20T03:18:24Z 2019-12-06T15:37:46Z 2016 Journal Article Ling, S., Phan, D. H., Stehlé, D., & Steinfeld, R. (2016). Hardness of k-LWE and Applications in Traitor Tracing. Algorithmica, 79(4), 1318-1352. 0178-4617 https://hdl.handle.net/10356/84074 http://hdl.handle.net/10220/42953 10.1007/s00453-016-0251-7 en Algorithmica © 2016 Springer Science+Business Media New York. This is the author created version of a work that has been peer reviewed and accepted for publication by Algorithmica, Springer Science+Business Media New York. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1007/s00453-016-0251-7]. 29 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Lattice-based cryptography Traitor tracing |
spellingShingle |
Lattice-based cryptography Traitor tracing Ling, San Phan, Duong Hieu Stehlé, Damien Steinfeld, Ron Hardness of k-LWE and Applications in Traitor Tracing |
description |
We introduce the k-LWE problem, a Learning With Errors variant of the k-SIS problem. The Boneh-Freeman reduction from SIS to k-SIS suffers from an exponential loss in k. We improve and extend it to an LWE to k-LWE reduction with a polynomial loss in k, by relying on a new technique involving trapdoors for random integer kernel lattices. Based on this hardness result, we present the first algebraic construction of a traitor tracing scheme whose security relies on the worst-case hardness of standard lattice problems. The proposed LWE traitor tracing is almost as efficient as the LWE encryption. Further, it achieves public traceability, i.e., allows the authority to delegate the tracing capability to “untrusted” parties. To this aim, we introduce the notion of projective sampling family in which each sampling function is keyed and, with a projection of the key on a well chosen space, one can simulate the sampling function in a computationally indistinguishable way. The construction of a projective sampling family from k-LWE allows us to achieve public traceability, by publishing the projected keys of the users. We believe that the new lattice tools and the projective sampling family are quite general that they may have applications in other areas. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Ling, San Phan, Duong Hieu Stehlé, Damien Steinfeld, Ron |
format |
Article |
author |
Ling, San Phan, Duong Hieu Stehlé, Damien Steinfeld, Ron |
author_sort |
Ling, San |
title |
Hardness of k-LWE and Applications in Traitor Tracing |
title_short |
Hardness of k-LWE and Applications in Traitor Tracing |
title_full |
Hardness of k-LWE and Applications in Traitor Tracing |
title_fullStr |
Hardness of k-LWE and Applications in Traitor Tracing |
title_full_unstemmed |
Hardness of k-LWE and Applications in Traitor Tracing |
title_sort |
hardness of k-lwe and applications in traitor tracing |
publishDate |
2017 |
url |
https://hdl.handle.net/10356/84074 http://hdl.handle.net/10220/42953 |
_version_ |
1759855548835037184 |