Soft Actuators and their Fabrication for Bio-Inspired Mobile Robots

Dielectric elastomer actuators (DEA), which are capable of muscle-like actuation, have potential to drive insect-inspired flapping-wing robotfly. There have yet been successfully used to drive flapping wings due to various limitations. This paper revisits their use and integration in a thoracic mech...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Heng, Kim-Rui, Lau, Gih-Keong, Low, Sze-Shien, Chin, Yao-Wei
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2016
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/84404
http://hdl.handle.net/10220/41745
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Dielectric elastomer actuators (DEA), which are capable of muscle-like actuation, have potential to drive insect-inspired flapping-wing robotfly. There have yet been successfully used to drive flapping wings due to various limitations. This paper revisits their use and integration in a thoracic mechanism as either indirect or direct muscles. Three forms of DEA, i.e. folded, rolled, and pre-stretched membrane, were evaluated and integrated in different thoracic mechanisms. The pre-strained membrane of dielectric elastomer was found capable of generating a large rotation. On the other hand, the folded and rolled ones with either no or little pre-strain performed modestly in this flapping-wing application. Pre-strain was found to be important to maximize the actuator performance. In addition, this paper reviewed manufacturing processes for multi-layered DEAs and possibility of introducing pre-strained in the multi-layered layup.