Cross entropy weight minimization of a compressive strut
In this study, a population-based optimization algorithm is used to minimize the weight of a compressive strut. A geometrically nonlinear analysis is carried out to get an accurate measure of the structure’s true capacity, allowing for individual member and overall structure (and sub-structure) buck...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/84407 http://hdl.handle.net/10220/41758 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | In this study, a population-based optimization algorithm is used to minimize the weight of a compressive strut. A geometrically nonlinear analysis is carried out to get an accurate measure of the structure’s true capacity, allowing for individual member and overall structure (and sub-structure) buckling. To overcome the computational challenge of nonlinear analysis, the study uses a simple definition of the onset of instability and hence the number of iterations is cut to a minimum. |
---|